import numpy as np
from time import perf_counter as time
import pyfnntw
from pykdtree.kdtree import KDTree as pykdTree
from scipy.spatial import cKDTree as scipyTree
NRAND = 4*10**6
NQUERY = 4*10**6
WARMUP = 20
RUNS = 100
LS = 32
KK = [1, 10]
print(f"(d={NRAND:,}, q={NQUERY:,}, ls={LS}, runs={RUNS}")
DATA = np.random.uniform(size=(NRAND, 3))
times = []
for _ in range((len(KK) + 1)):
times.append([])
libs = ["scipy", "pykdtree", "fnntw"]
for lib in libs:
print()
print(f"{lib} results")
build_time = 0
kdtree = None
for run in range(-WARMUP, RUNS):
start = time()
if lib == "scipy":
kdtree = scipyTree(DATA, leafsize=LS) elif lib == "pykdtree":
kdtree = pykdTree(DATA, leafsize=LS)
elif lib == "fnntw":
kdtree = pyfnntw.Treef64(DATA, leafsize=LS, par_split_level=4)
else:
assert False
bt = (time() - start)*1000
if run >= 0:
build_time += bt
avg_build = build_time / RUNS
times[0].append(avg_build)
print(f"{lib}: {avg_build=:.3f} ms")
for (i, K) in enumerate(KK):
query_time = 0
qt = 0
queries = np.random.uniform(size=(NQUERY, 3))
for run in range(-WARMUP, RUNS):
if lib == "scipy":
start = time()
dist, idx = kdtree.query(queries, k=K, workers=-1)
qt = (time() - start)*1000
elif lib == "pykdtree":
start = time()
dist, idx = kdtree.query(queries, k=K, sqr_dists=False)
qt = (time() - start)*1000
elif lib == "fnntw":
start = time()
dist, idx = kdtree.query(queries, K)
qt = (time() - start)*1000
else:
assert False
if run >= 0:
query_time += qt
avg_query = query_time / RUNS
times[i+1].append(avg_query)
print(f"{lib} k={K}: {avg_query=:.3f} ms")
print()
print('\x1b[6;30;42m' + 'build & nonpbc winners:' + '\x1b[0m')
print(f"build winner: {libs[np.argmin(times[0])]} @ {np.min(times[0]):.3f} ms")
for (i, K) in enumerate(KK):
print(f"{K=} query winner: {libs[np.argmin(times[1+i])]}: @ {np.min(times[i+1]):.3f} ms")
print()
print("periodic results")
times = []
for _ in range(len(KK)):
times.append([])
libs = ["scipy", "fnntw"]
for lib in libs:
print()
print(f"{lib} results")
kdtree = None
if lib == "scipy":
kdtree = scipyTree(DATA, boxsize = 1.0, leafsize=LS)
else:
kdtree = pyfnntw.Treef64(DATA, boxsize = np.array([1.0]*3), leafsize=LS, par_split_level=4)
for (i, K) in enumerate(KK):
query_time = 0
qt = 0
queries = np.random.uniform(size=(NQUERY, 3))
for run in range(-WARMUP, RUNS):
if lib == "scipy":
start = time()
dist, idx = kdtree.query(queries, k=K, workers=-1)
qt = (time() - start)*1000
else:
start = time()
dist, idx = kdtree.query(queries, K)
qt = (time() - start)*1000
if run >= 0:
query_time += qt
avg_query = query_time / RUNS
times[i].append(avg_query)
print(f"{lib} k={K}: {avg_query=:.3f} ms")
print()
print('\x1b[6;30;42m' + 'pbc winners:' + '\x1b[0m')
for (i, K) in enumerate(KK):
print(f"{K=} query winner: {libs[np.argmin(times[i])]} @ {np.min(times[i]):.3f} ms", )
times = []
for _ in range(len(KK)):
times.append([])
libs = ["scipy", "pykdtree", "fnntw"]
DATA = DATA.astype(np.float32)
for lib in libs:
print()
print(f"{lib} single precision results")
build_time = 0
kdtree = None
queries = np.random.uniform(size=(NQUERY, 3)).astype(np.float32)
if lib == "scipy":
kdtree = scipyTree(DATA, leafsize=LS) elif lib == "pykdtree":
kdtree = pykdTree(DATA, leafsize=LS)
else:
kdtree = pyfnntw.Treef32(DATA, leafsize=LS, par_split_level=4)
for (i, K) in enumerate(KK):
query_time = 0
qt = 0
queries = np.random.uniform(size=(NQUERY, 3)).astype(np.float32)
for run in range(-WARMUP, RUNS):
if lib == "scipy":
start = time()
dist, idx = kdtree.query(queries, k=K, workers=-1)
qt = (time() - start)*1000
elif lib == "pykdtree":
start = time()
dist, idx = kdtree.query(queries, k=K, sqr_dists=False)
qt = (time() - start)*1000
else:
start = time()
dist, idx = kdtree.query(queries, K)
qt = (time() - start)*1000
if run >= 0:
query_time += qt
avg_query = query_time / RUNS
times[i].append(avg_query)
print(f"{lib} k={K}: {avg_query=:.3f} ms")
print()
print('\x1b[6;30;42m' + 'single precision winners:' + '\x1b[0m')
for (i, K) in enumerate(KK):
print(f"{K=} query winner: {libs[np.argmin(times[i])]} @ {np.min(times[i]):.3f} ms", )