1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#[allow(dead_code)]

pub mod vector;
pub mod matrix;
pub mod hexadecimal;
pub mod color;

pub use core::f32::consts::PI;

/// Returns: the **largest** value in the given `array`
pub fn max<N>( values:&[N] ) -> N
where N:PartialOrd + Copy
{
    let mut largest = values[0];
    let mut i = 0;
    while i < values.len() {
        if values[i] > largest {
            largest = values[i];
        }
        i += 1;
    }

    return largest;
}

/// Returns: the **smallest** value in the given `array`
pub fn min<N>( values:&[N] ) -> N
where N:PartialOrd + Copy
{
    let mut smallest = values[0];
    let mut i = 0;
    while i < values.len() {
        if values[i] < smallest {
            smallest = values[i];
        }
        i += 1;
    }

    return smallest;
}

/// Clamps the given `value` between given `minimum` and `maximum`.
/// 
/// * Returns: `mininimum` if `value` is *less* than `minimum`.
/// 
/// * Returns: `maximum` if `value` is *greater* than `maximum`.
/// 
/// * Returns: `value` if `value` is between the `minimum` and `maximum` range.
/// 
pub fn clamp<N>( value:N, min:N, max:N ) -> N
where N:PartialOrd
{
    assert!( min <= max );
    if value < min {
        return min;
    } else if value > max {
        return max;
    }

    return value;
}

/// Overflows input `f32` between **0.0** and **360.0**
/// 
/// * Returns: `degrees` between **0.0** and **360.0**
pub fn degrees_overflow( degrees:f32 ) -> f32 {
    let mut result = degrees;

    if result < 0.0 {
        result += 360.0;
    }
    
    if result > 360.0 {
        return result % 360.0;
    } else {
        return result;
    }
}

/// Adds `lhs` and `rhs` with *overflow* check
/// 
/// * Returns: **255** if `result` overflows
/// 
/// * Returns: `result` if no overflow occurs
pub fn u8_add_overflow_max_clamp( lhs:u8, rhs:u8 ) -> u8 {
    let ( result, is_overflowing ) = u8::overflowing_add(lhs, rhs);
    if is_overflowing {
        return u8::MAX;
    } else {
        return result;
    }
}

/// Subtracts `rhs` from `lhs` with *overflow* check
/// 
/// * Returns: **0** if `result` overflows
/// 
/// * Returns: `result` if no overflow occurs
pub fn u8_sub_overflow_min_clamp( lhs:u8, rhs:u8 ) -> u8 {
    let ( result, is_overflowing ) = u8::overflowing_sub(lhs, rhs);
    if is_overflowing {
        return 0_u8;
    } else {
        return result;
    }
}

/// Multiplies `lhs` and `rhs` with *overflow* check
/// 
/// * Returns: **255** if `result` overflows
/// 
/// * Returns: `result` if no overflow occurs
pub fn u8_mul_overflow_max_clamp( lhs:u8, rhs:u8 ) -> u8 {
    let ( result, is_overflowing ) = u8::overflowing_mul(lhs, rhs);
    if is_overflowing {
        return u8::MAX;
    } else {
        return result;
    }
}

/// `Degrees` or `Radians`
/// 
/// Used as an input for various rotation functions
pub enum Angle {
    Degrees,
    Radians,
}

/// Returns: radians as`f32`
pub fn degrees_to_radians(d:f32) -> f32 {
    d * PI/180.0
}

/// Returns: degrees as `f32`
pub fn radians_to_degrees(r:f32) -> f32 {
    r * 180.0/PI
}