1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
//! This library provides an online algorithm to fit streaming data into a set of balls.
//!
//! The algorithm needs two functions that can be customized :
//! - a function that computes a distance between two points
//! - a function that computes the weighted center of two points
//!
//! Theese functions are used to construct the [Algo] and [Model] structs,
//! that respectively represent the algorithm and the set of balls model.
//! Each ball is described by its center, radius and weight
//! (the decayed number of points that were included in the ball).
//!
//! ```
//! use fluent_data::{Model, Algo, space};
//!
//! fn get_algo_model() -> (Model<Vec<f64>>, Algo<Vec<f64>>) {
//! let algo = Algo::new(space::euclid_dist, space::real_combine);
//! let model = Model::new(space::euclid_dist);
//! (model, algo)
//! }
//! ```
//!
//! The [Streamer] enlessly consumes data points and produce models. It needs:
//! - a point iterator that produces points consumed by the streamer,
//! - a write closure that consumes models produced by the streamer.
//!
//! The [streamer::stdio] function builds an iterator that reads standard input
//! and a write closure that writes to standard input.
//! ```
//! use std::error::Error;
//! use fluent_data::{streamer, Streamer};
//!
//! fn get_streamer() -> Streamer<
//! impl Iterator<Item = Result<String, Box<dyn Error>>>,
//! impl FnMut(String) -> Result<(), Box<dyn Error>>,
//! >
//! {
//! let (points, write) = streamer::stdio();
//! Streamer::new(points, write)
//! }
//! ```
//!
//! In the example below the [Streamer::run] method runs the algorithm and fit the model continuously,
//! consuming data points from standard input and producing models to standard output.
//! ```
//! use std::{error::Error};
//!
//! use fluent_data::{Algo, Model, Streamer};
//! use fluent_data::{ space, streamer};
//!
//! fn main() {
//! let (algo, mut model) = get_algo_model();
//! let streamer = get_streamer();
//! Streamer::run(streamer, algo, &mut model).unwrap();
//! }
//!
//! fn get_algo_model() -> (Algo<Vec<f64>>, Model<Vec<f64>>) {
//! let algo = Algo::new(space::euclid_dist, space::real_combine);
//! let model = Model::new(space::euclid_dist);
//! (algo, model)
//! }
//!
//! fn get_streamer() -> Streamer<
//! impl Iterator<Item = Result<String, Box<dyn Error>>>,
//! impl FnMut(String) -> Result<(), Box<dyn Error>>
//! > {
//! let (points, write) = streamer::stdio();
//! let streamer = Streamer::new(points, write);
//! streamer
//! }
//! ```
//!
//! Alternatively, the library provides a backend that
//! receive data points from websockets and send models to websockets.
//! Just replace the point iterator and
//! the model write closure when building the streamer: use those provided by
//! the [service::backend] method.
//! ```
//! use std::error::Error;
//! use fluent_data::{service, Streamer};
//!
//! fn get_streamer() -> Streamer<
//! impl Iterator<Item = Result<String, Box<dyn Error>>>,
//! impl FnMut(String) -> Result<(), Box<dyn Error>>,
//! >
//! {
//! let (points, write) = service::backend();
//! Streamer::new(points, write)
//! }
//! ```
//!
//! ## Customization
//! The algorithm can use other distance than the Euclidean distance.
//! You'll have to write your own distance function and create `Algo` and `Model` structs:
//! ```
//! use serde::{Deserialize, Serialize};
//! use serde_json::Result;
//! use fluent_data::{Model, Algo, space};
//!
//! #[derive(Serialize, Deserialize, PartialEq)]
//! struct Point {
//! //...
//! }
//!
//! /// Return the SQUARE of the distance between p1 and p2
//! fn distance(p1: &Point, p2: &Point) -> f64 {
//! todo!()
//! }
//!
//! /// Return the weighted center of p1 x w1 and p2 x w2
//! fn combine(p1: &Point, w1: f64, p2: &Point, w2: f64) -> Point {
//! todo!()
//! }
//!
//! fn get_algo_model() -> (Algo<Point>, Model<Point>) {
//! let algo = Algo::new(distance, combine);
//! let model = Model::new(distance);
//! (algo, model)
//! }
//! ```
//!
//! You can also modify the way data points are received and models are sent
//! by writing your own itertor and write closure (or function):
//! ```
//! use std::error::Error;
//! use fluent_data::{service, Streamer};
//!
//! /// Produce data points
//! struct PointIterator {
//! //...
//! }
//!
//! impl Iterator for PointIterator {
//! type Item = Result<String, Box<dyn Error>>;
//!
//! fn next(&mut self) -> Option<Self::Item> {
//! todo!()
//! }
//! }
//!
//! /// Send models
//! fn write_model(model: String) -> Result<(), Box<dyn Error>> {
//! todo!()
//! }
//!
//! fn get_streamer() -> Streamer<
//! impl Iterator<Item = Result<String, Box<dyn Error>>>,
//! impl FnMut(String) -> Result<(), Box<dyn Error>>,
//! >
//! {
//! Streamer::new(PointIterator{}, write_model)
//! }
//! ```
//!
//! ## Loading an existing model
//! The generated models could be saved to a persistent store by writing a custom write closure
//! or decorating an existing one (see section above).
//! A saved model may be loaded at system startup thanks to [Model::load].
//! ```
//! use fluent_data::{Model, Algo, space, model::BallData};
//! use fluent_data::{service, Streamer};
//! use std::error::Error;
//!
//! fn get_algo_model(data: Vec<BallData<Vec<f64>>>) -> (Model<Vec<f64>>, Algo<Vec<f64>>) {
//! let algo = Algo::new(space::euclid_dist, space::real_combine);
//! let model = Model::load(space::euclid_dist, data);
//! (model, algo)
//! }
//!
//! fn get_streamer() -> Streamer<
//! impl Iterator<Item = Result<String, Box<dyn Error>>>,
//! impl FnMut(String) -> Result<(), Box<dyn Error>>,
//! >
//! {
//! let (points, mut write) = service::backend();
//! let decorated_write = move |model| {
//! // save model to persistent store
//! todo!();
//! write(model)
//! };
//! Streamer::new(points, decorated_write)
//! }
//! ```
//!
//! ## Binary executable
//! An executable program is also provided by this crate:
//! - `fluent_data`
//! - reads R^n points from standard input and writes models to standard output,
//! - `fluent_data --service`
//! - starts a server, receives R^n points from websockets and dispatch models to websockets,
//! - `fluent_data --help`
//! - display the executable usage documentation.
//!
//! See the project [README on crates.io](https://crates.io/crates/fluent_data) for more information.
pub mod algorithm;
pub mod model;
pub mod service;
pub mod space;
pub mod streamer;
mod graph;
mod neighborhood;
pub use algorithm::Algo;
pub use model::Model;
pub use streamer::Streamer;