float-cmp 0.10.0

Floating point approximate comparison traits
Documentation
// Copyright 2014-2020 Optimal Computing (NZ) Ltd.
// Licensed under the MIT license.  See LICENSE for details.

use super::Ulps;
use core::{f32, f64};
#[cfg(feature = "num-traits")]
#[allow(unused_imports)]
use num_traits::float::FloatCore;

/// A margin specifying a maximum distance two floating point values can be while
/// still being considered equal enough.
pub trait FloatMargin: Copy + Default {
    /// A floating-point type used for epsilon values
    type F;

    /// An integer type used for ulps values
    type I;

    /// Zero margin
    fn zero() -> Self;

    /// Set the epsilon value for this margin
    fn epsilon(self, epsilon: Self::F) -> Self;

    /// Set the ulps value for this margin
    fn ulps(self, ulps: Self::I) -> Self;
}

/// A trait for approximate equality comparisons.
pub trait ApproxEq: Sized {
    /// This type type defines a margin within which two values are to be
    /// considered approximately equal. It must implement `Default` so that
    /// `approx_eq()` can be called on unknown types.
    type Margin: FloatMargin;

    /// This method tests that the `self` and `other` values are equal within `margin`
    /// of each other.
    fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool;

    /// This method tests that the `self` and `other` values are not within `margin`
    /// of each other.
    fn approx_ne<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool {
        !self.approx_eq(other, margin)
    }
}

/// This type defines a margin within two `f32` values might be considered equal,
/// and is intended as the associated type for the `ApproxEq` trait.
///
/// Two tests are used to determine approximate equality.
///
/// The first test considers two values approximately equal if they differ by <=
/// `epsilon`. This will only succeed for very small numbers. Note that it may
/// succeed even if the parameters are of differing signs, straddling zero.
///
/// The second test considers how many ULPs (units of least precision, units in
/// the last place, which is the integer number of floating-point representations
/// that the parameters are separated by) different the parameters are and considers
/// them approximately equal if this is <= `ulps`. For large floating-point numbers,
/// an ULP can be a rather large gap, but this kind of comparison is necessary
/// because floating-point operations must round to the nearest representable value
/// and so larger floating-point values accumulate larger errors.
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct F32Margin {
    pub epsilon: f32,
    pub ulps: i32,
}
impl Default for F32Margin {
    #[inline]
    fn default() -> F32Margin {
        F32Margin {
            epsilon: f32::EPSILON,
            ulps: 4,
        }
    }
}
impl FloatMargin for F32Margin {
    type F = f32;
    type I = i32;

    #[inline]
    fn zero() -> F32Margin {
        F32Margin {
            epsilon: 0.0,
            ulps: 0,
        }
    }
    fn epsilon(self, epsilon: f32) -> Self {
        F32Margin { epsilon, ..self }
    }
    fn ulps(self, ulps: i32) -> Self {
        F32Margin { ulps, ..self }
    }
}
impl From<(f32, i32)> for F32Margin {
    fn from(m: (f32, i32)) -> F32Margin {
        F32Margin {
            epsilon: m.0,
            ulps: m.1,
        }
    }
}

// no-std compatible abs function
#[inline(always)]
fn f32abs(x: f32) -> f32 {
    f32::from_bits(x.to_bits() & !(1 << 31))
}

impl ApproxEq for f32 {
    type Margin = F32Margin;

    fn approx_eq<M: Into<Self::Margin>>(self, other: f32, margin: M) -> bool {
        let margin = margin.into();

        // Check for exact equality first. This is often true, and so we get the
        // performance benefit of only doing one compare in most cases.
        self == other || {
            // Perform epsilon comparison next
            let eps = f32abs(self - other);
            (eps <= margin.epsilon) || {
                // Perform ulps comparison last
                let diff: i32 = self.ulps(&other);
                saturating_abs_i32!(diff) <= margin.ulps
            }
        }
    }
}

#[test]
fn f32_approx_eq_test1() {
    let f: f32 = 0.0_f32;
    let g: f32 = -0.0000000000000005551115123125783_f32;
    assert!(f != g); // Should not be directly equal
    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
}
#[test]
fn f32_approx_eq_test2() {
    let f: f32 = 0.0_f32;
    let g: f32 = -0.0_f32;
    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
}
#[test]
fn f32_approx_eq_test3() {
    let f: f32 = 0.0_f32;
    let g: f32 = 0.00000000000000001_f32;
    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
}
#[test]
fn f32_approx_eq_test4() {
    let f: f32 = 0.00001_f32;
    let g: f32 = 0.00000000000000001_f32;
    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == false);
}
#[test]
fn f32_approx_eq_test5() {
    let f: f32 = 0.1_f32;
    let mut sum: f32 = 0.0_f32;
    for _ in 0_isize..10_isize {
        sum += f;
    }
    let product: f32 = f * 10.0_f32;
    assert!(sum != product); // Should not be directly equal:
    assert!(sum.approx_eq(product, (f32::EPSILON, 1)) == true);
    assert!(sum.approx_eq(product, F32Margin::zero()) == false);
}
#[test]
fn f32_approx_eq_test6() {
    let x: f32 = 1000000_f32;
    let y: f32 = 1000000.1_f32;
    assert!(x != y); // Should not be directly equal
    assert!(x.approx_eq(y, (0.0, 2)) == true); // 2 ulps does it
                                               // epsilon method no good here:
    assert!(x.approx_eq(y, (1000.0 * f32::EPSILON, 0)) == false);
}

/// This type defines a margin within two `f64` values might be considered equal,
/// and is intended as the associated type for the `ApproxEq` trait.
///
/// Two tests are used to determine approximate equality.
///
/// The first test considers two values approximately equal if they differ by <=
/// `epsilon`. This will only succeed for very small numbers. Note that it may
/// succeed even if the parameters are of differing signs, straddling zero.
///
/// The second test considers how many ULPs (units of least precision, units in
/// the last place, which is the integer number of floating-point representations
/// that the parameters are separated by) different the parameters are and considers
/// them approximately equal if this is <= `ulps`. For large floating-point numbers,
/// an ULP can be a rather large gap, but this kind of comparison is necessary
/// because floating-point operations must round to the nearest representable value
/// and so larger floating-point values accumulate larger errors.
#[derive(Debug, Clone, Copy)]
pub struct F64Margin {
    pub epsilon: f64,
    pub ulps: i64,
}
impl Default for F64Margin {
    #[inline]
    fn default() -> F64Margin {
        F64Margin {
            epsilon: f64::EPSILON,
            ulps: 4,
        }
    }
}
impl FloatMargin for F64Margin {
    type F = f64;
    type I = i64;

    #[inline]
    fn zero() -> F64Margin {
        F64Margin {
            epsilon: 0.0,
            ulps: 0,
        }
    }
    fn epsilon(self, epsilon: f64) -> Self {
        F64Margin { epsilon, ..self }
    }
    fn ulps(self, ulps: i64) -> Self {
        F64Margin { ulps, ..self }
    }
}
impl From<(f64, i64)> for F64Margin {
    fn from(m: (f64, i64)) -> F64Margin {
        F64Margin {
            epsilon: m.0,
            ulps: m.1,
        }
    }
}

// no-std compatible abs function
#[inline(always)]
fn f64abs(x: f64) -> f64 {
    f64::from_bits(x.to_bits() & !(1 << 63))
}

impl ApproxEq for f64 {
    type Margin = F64Margin;

    fn approx_eq<M: Into<Self::Margin>>(self, other: f64, margin: M) -> bool {
        let margin = margin.into();

        // Check for exact equality first. This is often true, and so we get the
        // performance benefit of only doing one compare in most cases.
        self == other || {
            // Perform epsilon comparison next
            let eps = f64abs(self - other);
            (eps <= margin.epsilon) || {
                // Perform ulps comparison last
                let diff: i64 = self.ulps(&other);
                saturating_abs_i64!(diff) <= margin.ulps
            }
        }
    }
}

#[test]
fn f64_approx_eq_test1() {
    let f: f64 = 0.0_f64;
    let g: f64 = -0.0000000000000005551115123125783_f64;
    assert!(f != g); // Should not be precisely equal.
    assert!(f.approx_eq(g, (3.0 * f64::EPSILON, 0)) == true); // 3e is enough.
                                                              // ULPs test won't ever call these equal.
}
#[test]
fn f64_approx_eq_test2() {
    let f: f64 = 0.0_f64;
    let g: f64 = -0.0_f64;
    assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true);
}
#[test]
fn f64_approx_eq_test3() {
    let f: f64 = 0.0_f64;
    let g: f64 = 1e-17_f64;
    assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true);
}
#[test]
fn f64_approx_eq_test4() {
    let f: f64 = 0.00001_f64;
    let g: f64 = 0.00000000000000001_f64;
    assert!(f.approx_eq(g, (f64::EPSILON, 0)) == false);
}
#[test]
fn f64_approx_eq_test5() {
    let f: f64 = 0.1_f64;
    let mut sum: f64 = 0.0_f64;
    for _ in 0_isize..10_isize {
        sum += f;
    }
    let product: f64 = f * 10.0_f64;
    assert!(sum != product); // Should not be precisely equally.
    assert!(sum.approx_eq(product, (f64::EPSILON, 0)) == true);
    assert!(sum.approx_eq(product, (0.0, 1)) == true);
}
#[test]
fn f64_approx_eq_test6() {
    let x: f64 = 1000000_f64;
    let y: f64 = 1000000.0000000003_f64;
    assert!(x != y); // Should not be precisely equal.
    assert!(x.approx_eq(y, (0.0, 3)) == true);
}
#[test]
fn f64_code_triggering_issue_20() {
    assert_eq!((-25.0f64).approx_eq(25.0, (0.00390625, 1)), false);
}

impl<T> ApproxEq for &[T]
where
    T: Copy + ApproxEq,
{
    type Margin = <T as ApproxEq>::Margin;

    fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool {
        let margin = margin.into();
        if self.len() != other.len() {
            return false;
        }
        self.iter()
            .zip(other.iter())
            .all(|(a, b)| a.approx_eq(*b, margin))
    }
}

#[test]
fn test_slices() {
    assert!([1.33, 2.4, 2.5].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64)));
    assert!(![1.33, 2.4, 2.6].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64)));
    assert!(![1.33, 2.4].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64)));
    assert!(![1.33, 2.4, 2.5].approx_eq(&[1.33, 2.4], (0.0, 0_i64)));
}

impl<T> ApproxEq for Option<T>
where
    T: Copy + ApproxEq,
{
    type Margin = <T as ApproxEq>::Margin;

    fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool {
        let margin = margin.into();
        match (self, other) {
            (None, None) => true,
            (Some(slf), Some(oth)) => slf.approx_eq(oth, margin),
            _ => false,
        }
    }
}

#[test]
fn test_option() {
    let x: Option<f32> = None;
    assert!(x.approx_eq(None, (0.0, 0_i32)));
    assert!(Some(5.3_f32).approx_eq(Some(5.3), (0.0, 0_i32)));
    assert!(Some(5.3_f32).approx_ne(Some(5.7), (0.0, 0_i32)));
    assert!(Some(5.3_f32).approx_ne(None, (0.0, 0_i32)));
    assert!(x.approx_ne(Some(5.3), (0.0, 0_i32)));
}