flatk 0.5.2

Flat layout abstraction toolkit.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
//! **F**lat **l**ayout **a**bstraction **t**ool**k**it.
//!
//! This library defines low level primitives for organizing flat ordered data collections (like `Vec`s
//! and `slice`s) into meaningful structures without cloning the data.
//!
//! More specifically, `flatk` provides a few core composable types intended for building more complex
//! data structures out of existing data:
//!
//! - `UniChunked`:  Subdivides a collection into a number of uniformly sized (at compile time or
//!   run-time) contiguous chunks.
//!   For example if we have a `Vec` of floats representing 3D positions, we may wish to interpret them
//!   as triplets:
//!
//!   ```rust
//!   use flatk::Chunked3;
//!
//!   let pos_data = vec![0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0];
//!
//!   let pos = Chunked3::from_flat(pos_data);
//!
//!   assert_eq!(pos[0], [0.0; 3]);
//!   assert_eq!(pos[1], [1.0; 3]);
//!   assert_eq!(pos[2], [0.0, 1.0, 0.0]);
//!   ```
//!
//!   For dynamically determined chunks sizes, the type alias `ChunkedN` can be used instead. The
//!   previous example can then be reproduced as:
//!
//!   ```rust
//!   use flatk::ChunkedN;
//!
//!   let pos_data = vec![0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0];
//!
//!   let pos = ChunkedN::from_flat_with_stride(3, pos_data);
//!
//!   assert_eq!(pos[0], [0.0; 3]);
//!   assert_eq!(pos[1], [1.0; 3]);
//!   assert_eq!(pos[2], [0.0, 1.0, 0.0]);
//!   ```
//!
//! - `Chunked`: Subdivides a collection into a number of unstructured (non-uniformly sized) chunks.
//!   For example we may have a non-uniform grouping of nodes stored in a `Vec`, which can represent a
//!   directed graph:
//!   
//!   ```rust
//!   use flatk::Chunked;
//!   
//!   let neighbours = vec![1, 2, 0, 1, 0, 1, 2];
//!   
//!   let neigh = Chunked::from_sizes(vec![1,2,1,3], neighbours);
//!
//!   assert_eq!(&neigh[0][..], &[1][..]);
//!   assert_eq!(&neigh[1][..], &[2, 0][..]);
//!   assert_eq!(&neigh[2][..], &[1][..]);
//!   assert_eq!(&neigh[3][..], &[0, 1, 2][..]);
//!   ```
//!
//!   Here `neigh` defines the following graph:
//!
//!   ```verbatim
//!   0<--->1<--->2
//!   ^     ^     ^
//!    \    |    /
//!     \   |   /
//!      \  |  /
//!       \ | /
//!        \|/
//!         3
//!   ```
//! - `Clumped`: A hybrid between `UniChunked` and `Chunked`, this type aggregates references to
//!   uniformly spaced chunks where possible.
//!   This makes it preferable for collections with mostly uniformly spaced chunks.
//!
//!   For example, polygons can be represented as indices into some global vertex array.
//!   Polygonal meshes are often made from a combination of triangles and quadrilaterals, so we
//!   can't represent the vertex indices as a `UniChunked` vector, and it would be too wastefull to
//!   keep track of each chunk using a plain `Chunked` vector. `Clumped`, however, is perfect for
//!   this use case since it only stores an additional pair of offsets (`usize` integers) for each
//!   type of polygon. In code this may look like the following:
//!   
//!   ```rust
//!   use flatk::{Clumped, Get, View};
//!   
//!   // Indices into some vertex array (depicted below): 6 triangles followed by 2 quadrilaterals.
//!   let indices = vec![0,1,2, 2,1,3, 7,1,0, 3,5,10, 9,8,7, 4,6,5, 7,8,4,1, 1,4,5,3];
//!   
//!   let polys = Clumped::from_sizes_and_counts(vec![3,4], vec![6,2], indices);
//!   let polys_view = polys.view();
//!
//!   assert_eq!(&polys_view.at(0)[..], &[0,1,2][..]);
//!   assert_eq!(&polys_view.at(1)[..], &[2,1,3][..]);
//!   assert_eq!(&polys_view.at(2)[..], &[7,1,0][..]);
//!   assert_eq!(&polys_view.at(3)[..], &[3,5,10][..]);
//!   assert_eq!(&polys_view.at(4)[..], &[9,8,7][..]);
//!   assert_eq!(&polys_view.at(5)[..], &[4,6,5][..]);
//!   assert_eq!(&polys_view.at(6)[..], &[7,8,4,1][..]);
//!   assert_eq!(&polys_view.at(7)[..], &[1,4,5,3][..]);
//!   ```
//!
//!   These polygons could represent a mesh like below, where each number corresponds to a vertex
//!   index.
//!
//!   ```verbatim
//!   0 ---- 2 ---- 3 --10
//!   |\     |     / \  |
//!   | \    |    /   \ |
//!   |  \   |   /     \|
//!   |   \  |  /       5
//!   |    \ | /       /|
//!   |     \|/       / |
//!   7 ---- 1       /  |
//!   |\      \     /   |
//!   | \      \   /    |
//!   |  \      \ /     |
//!   9 - 8 ---- 4 ---- 6
//!   ```
//!
//! - `Select`: An ordered selection (with replacement) of elements from a
//!   given random access collection. This is usually realized with a `Vec<usize>` representing indices
//!   into the original data collection.
//!
//!   For example one may wish to select game pieces in a board game:
//!
//!   ```rust
//!   use flatk::Select;
//!   
//!   let pieces = vec!["Pawn", "Knight", "Bishop", "Rook", "Queen", "King"];
//!   
//!   let white_pieces = Select::new(vec![3, 1, 2, 5, 4, 2, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0], pieces.as_slice());
//!   let black_pieces = Select::new(vec![0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 2, 5, 4, 2, 1, 3], pieces.as_slice());
//!
//!   assert_eq!(white_pieces[0], "Rook");
//!   assert_eq!(white_pieces[4], "Queen");
//!   assert_eq!(black_pieces[0], "Pawn");
//!   assert_eq!(black_pieces[11], "King");
//!   ```
//!
//! - `Subset`: Similar to `Select` but `Subset` enforces an unordered selection without replacement.
//!
//!   For example we can choose a hand from a deck of cards:
//!
//!   ```rust
//!   use flatk::{Subset, Get, View};
//!
//!   let rank = vec!["Ace", "2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King"];
//!   let suit = vec!["Clubs", "Diamonds", "Hearts", "Spades"];
//!
//!   // Natural handling of structure of arrays (SoA) style data.
//!   let deck: (Vec<_>, Vec<_>) = (
//!       rank.into_iter().cycle().take(52).collect(),
//!       suit.into_iter().cycle().take(52).collect()
//!   );
//!
//!   let hand = Subset::from_indices(vec![4, 19, 23, 1, 0, 5], deck);
//!   let hand_view = hand.view();
//!   assert_eq!(hand_view.at(0), (&"Ace", &"Clubs"));
//!   assert_eq!(hand_view.at(1), (&"2", &"Diamonds"));
//!   assert_eq!(hand_view.at(2), (&"5", &"Clubs"));
//!   assert_eq!(hand_view.at(3), (&"6", &"Diamonds"));
//!   assert_eq!(hand_view.at(4), (&"7", &"Spades"));
//!   assert_eq!(hand_view.at(5), (&"Jack", &"Spades"));
//!   ```
//!
//! - `Sparse`: A sparse data assignment to another collection. Effectively this type attaches another
//!   data set to a `Select`ion. See [`Sparse`] for examples.
//!
//!
//! # Indexing
//!
//! Due to the nature of type composition and the indexing mechanism in Rust, it is not always
//! possible to use the `Index` and `IndexMut` traits for indexing into the `flatk` collection
//! types.  To facilitate indexing, `flatk` defines two traits for indexing: [`Get`] and
//! [`Isolate`], which fill the roles of `Index` and `IndexMut` respectively.  These traits work
//! mainly on viewed collections (what is returned by calling `.view()` and `.view_mut()`).
//! `Isolate` can also work with collections that own their data, however it is not recommended
//! since methods provided by `Isolate` are destructive (they consume `self`).
//!
//! [`Get`]: trait.Get.html
//! [`Isolate`]: trait.Isolate.html
//! [`Sparse`]: struct.Sparse.html

/*
 * Define macros to be used for implementing various traits in submodules
 */

macro_rules! impl_atom_iterators_recursive {
    (impl<S, $($type_vars_decl:tt),*> for $type:ident<S, $($type_vars:tt),*> { $data_field:ident }) => {
        impl<'a, S, $($type_vars_decl,)*> AtomIterator<'a> for $type<S, $($type_vars,)*>
        where S: AtomIterator<'a>,
        {
            type Item = S::Item;
            type Iter = S::Iter;
            fn atom_iter(&'a self) -> Self::Iter {
                self.$data_field.atom_iter()
            }
        }

        impl<'a, S, $($type_vars_decl,)*> AtomMutIterator<'a> for $type<S, $($type_vars,)*>
        where S: AtomMutIterator<'a>
        {
            type Item = S::Item;
            type Iter = S::Iter;
            fn atom_mut_iter(&'a mut self) -> Self::Iter {
                self.$data_field.atom_mut_iter()
            }
        }
    }
}

macro_rules! impl_isolate_index_for_static_range {
    (impl<$($type_vars:ident),*> for $type:ty) => {
        impl_isolate_index_for_static_range! { impl<$($type_vars),*> for $type where }
    };
    (impl<$($type_vars:ident),*> for $type:ty where $($constraints:tt)*) => {
        impl<$($type_vars,)* N: Unsigned> IsolateIndex<$type> for StaticRange<N>
        where
            std::ops::Range<usize>: IsolateIndex<$type>,
            $($constraints)*
        {
            type Output = <std::ops::Range<usize> as IsolateIndex<$type>>::Output;

            #[inline]
            unsafe fn isolate_unchecked(self, set: $type) -> Self::Output {
                IsolateIndex::isolate_unchecked(self.start..self.start + N::to_usize(), set)
            }
            #[inline]
            fn try_isolate(self, set: $type) -> Option<Self::Output> {
                IsolateIndex::try_isolate(self.start..self.start + N::to_usize(), set)
            }
        }
    }
}

mod macros;

mod array;
mod boxed;
mod chunked;
#[cfg(feature = "gpu")]
pub mod gpu;
mod range;
mod select;
mod slice;
#[cfg(feature = "sparse")]
mod sparse;
mod subset;
mod tuple;
mod vec;
mod view;

pub use array::*;
pub use boxed::*;
pub use chunked::*;
#[cfg(feature = "gpu")]
pub use gpu::IntoGpu;
pub use range::*;
pub use select::*;
pub use slice::*;
#[cfg(feature = "sparse")]
pub use sparse::*;
pub use subset::*;
pub use tuple::*;
pub use vec::*;
pub use view::*;

#[cfg(feature = "derive")]
pub use flatk_derive::{Component, U};

pub use typenum::consts;
use typenum::type_operators::PartialDiv;
pub use typenum::Unsigned;

/*
 * Set is the most basic trait that annotates finite collections that contain data.
 */
/// A trait defining a raw buffer of data. This data is typed but not annotated so it can represent
/// anything. For example a buffer of floats can represent a set of vertex colours or vertex
/// positions.
pub trait Set {
    /// Owned element of the set.
    type Elem;
    /// The most basic element contained by this collection.
    /// If this collection contains other collections, this type should be
    /// different than `Elem`.
    type Atom;
    fn len(&self) -> usize;

    #[inline]
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

impl<N: Unsigned> Set for StaticRange<N> {
    type Elem = usize;
    type Atom = usize;
    #[inline]
    fn len(&self) -> usize {
        N::to_usize()
    }
}

impl<S: Set + ?Sized> Set for &S {
    type Elem = <S as Set>::Elem;
    type Atom = <S as Set>::Elem;
    #[inline]
    fn len(&self) -> usize {
        <S as Set>::len(self)
    }
}
impl<S: Set + ?Sized> Set for &mut S {
    type Elem = <S as Set>::Elem;
    type Atom = <S as Set>::Elem;
    #[inline]
    fn len(&self) -> usize {
        <S as Set>::len(self)
    }
}

impl<S: Set + ?Sized> Set for std::cell::Ref<'_, S> {
    type Elem = <S as Set>::Elem;
    type Atom = <S as Set>::Elem;
    #[inline]
    fn len(&self) -> usize {
        <S as Set>::len(self)
    }
}

impl<S: Set + ?Sized> Set for std::cell::RefMut<'_, S> {
    type Elem = <S as Set>::Elem;
    type Atom = <S as Set>::Elem;
    #[inline]
    fn len(&self) -> usize {
        <S as Set>::len(self)
    }
}

/*
 * Array manipulation
 */

pub trait AsFlatSlice<T> {
    fn as_flat_slice(&self) -> &[T];
}

pub trait Array<T> {
    type Array: Set<Elem = T> + bytemuck::Pod;
    fn iter_mut(array: &mut Self::Array) -> std::slice::IterMut<T>;
    fn iter(array: &Self::Array) -> std::slice::Iter<T>;
    fn as_slice(array: &Self::Array) -> &[T];
}

/*
 * Marker and utility traits to help with Coherence rules of Rust.
 */

/// A marker trait to identify types whose range indices give a dynamically sized type even if the
/// range index is given as a StaticRange.
pub trait DynamicRangeIndexType {}
#[cfg(feature = "sparse")]
impl<S, T, I> DynamicRangeIndexType for Sparse<S, T, I> {}
impl<S, I> DynamicRangeIndexType for Select<S, I> {}
impl<S, I> DynamicRangeIndexType for Subset<S, I> {}
impl<S, I> DynamicRangeIndexType for Chunked<S, I> {}
impl<S> DynamicRangeIndexType for ChunkedN<S> {}

/// A marker trait to indicate an owned collection type. This is to distinguish
/// them from borrowed types, which is essential to resolve implementation collisions.
pub trait ValueType {}
#[cfg(feature = "sparse")]
impl<S, T, I> ValueType for Sparse<S, T, I> {}
impl<S, I> ValueType for Select<S, I> {}
impl<S, I> ValueType for Subset<S, I> {}
impl<S, I> ValueType for Chunked<S, I> {}
impl<S, N> ValueType for UniChunked<S, N> {}

impl<S: Viewed + ?Sized> Viewed for &S {}
impl<S: Viewed + ?Sized> Viewed for &mut S {}
#[cfg(feature = "sparse")]
impl<S: Viewed, T: Viewed, I: Viewed> Viewed for Sparse<S, T, I> {}
impl<S: Viewed, I: Viewed> Viewed for Select<S, I> {}
impl<S: Viewed, I: Viewed> Viewed for Subset<S, I> {}
impl<S: Viewed, I: Viewed> Viewed for Chunked<S, I> {}
impl<S: Viewed, N> Viewed for UniChunked<S, N> {}

/// A marker trait to indicate a collection type that can be chunked. More precisely this is a type that can be composed with types in this crate.
//pub trait Chunkable<'a>:
//    Set + Get<'a, 'a, std::ops::Range<usize>> + RemovePrefix + View<'a> + PartialEq
//{
//}
//impl<'a, T: Clone + PartialEq> Chunkable<'a> for &'a [T] {}
//impl<'a, T: Clone + PartialEq> Chunkable<'a> for &'a mut [T] {}
//impl<'a, T: Clone + PartialEq + 'a> Chunkable<'a> for Vec<T> {}

/*
 * Aggregate traits
 */

pub trait StaticallySplittable:
    IntoStaticChunkIterator<consts::U2>
    + IntoStaticChunkIterator<consts::U3>
    + IntoStaticChunkIterator<consts::U4>
    + IntoStaticChunkIterator<consts::U5>
    + IntoStaticChunkIterator<consts::U6>
    + IntoStaticChunkIterator<consts::U7>
    + IntoStaticChunkIterator<consts::U8>
    + IntoStaticChunkIterator<consts::U9>
    + IntoStaticChunkIterator<consts::U10>
    + IntoStaticChunkIterator<consts::U11>
    + IntoStaticChunkIterator<consts::U12>
    + IntoStaticChunkIterator<consts::U13>
    + IntoStaticChunkIterator<consts::U14>
    + IntoStaticChunkIterator<consts::U15>
    + IntoStaticChunkIterator<consts::U16>
{
}

impl<T> StaticallySplittable for T where
    T: IntoStaticChunkIterator<consts::U2>
        + IntoStaticChunkIterator<consts::U3>
        + IntoStaticChunkIterator<consts::U4>
        + IntoStaticChunkIterator<consts::U5>
        + IntoStaticChunkIterator<consts::U6>
        + IntoStaticChunkIterator<consts::U7>
        + IntoStaticChunkIterator<consts::U8>
        + IntoStaticChunkIterator<consts::U9>
        + IntoStaticChunkIterator<consts::U10>
        + IntoStaticChunkIterator<consts::U11>
        + IntoStaticChunkIterator<consts::U12>
        + IntoStaticChunkIterator<consts::U13>
        + IntoStaticChunkIterator<consts::U14>
        + IntoStaticChunkIterator<consts::U15>
        + IntoStaticChunkIterator<consts::U16>
{
}

pub trait ReadSet<'a>:
    Set
    + View<'a>
    + Get<'a, usize>
    + Get<'a, std::ops::Range<usize>>
    + Isolate<usize>
    + Isolate<std::ops::Range<usize>>
    + IntoOwned
    + IntoOwnedData
    + SplitAt
    + SplitOff
    + SplitFirst
    + IntoStorage
    + Dummy
    + RemovePrefix
    + IntoChunkIterator
    + StaticallySplittable
    + Viewed
    + IntoIterator
{
}

impl<'a, T> ReadSet<'a> for T where
    T: Set
        + View<'a>
        + Get<'a, usize>
        + Get<'a, std::ops::Range<usize>>
        + Isolate<usize>
        + Isolate<std::ops::Range<usize>>
        + IntoOwned
        + IntoOwnedData
        + SplitAt
        + SplitOff
        + SplitFirst
        + IntoStorage
        + Dummy
        + RemovePrefix
        + IntoChunkIterator
        + StaticallySplittable
        + Viewed
        + IntoIterator
{
}

pub trait WriteSet<'a>: ReadSet<'a> + ViewMut<'a> {}
impl<'a, T> WriteSet<'a> for T where T: ReadSet<'a> + ViewMut<'a> {}

pub trait OwnedSet<'a>:
    Set
    + View<'a>
    + ViewMut<'a>
    + Get<'a, usize>
    + Get<'a, std::ops::Range<usize>>
    + Isolate<usize>
    + Isolate<std::ops::Range<usize>>
    + IntoOwned
    + IntoOwnedData
    + SplitOff
    + IntoStorage
    + Dummy
    + RemovePrefix
    + IntoChunkIterator
    + StaticallySplittable
    + ValueType
{
}
impl<'a, T> OwnedSet<'a> for T where
    T: Set
        + View<'a>
        + ViewMut<'a>
        + Get<'a, usize>
        + Get<'a, std::ops::Range<usize>>
        + Isolate<usize>
        + Isolate<std::ops::Range<usize>>
        + IntoOwned
        + IntoOwnedData
        + SplitOff
        + IntoStorage
        + Dummy
        + RemovePrefix
        + IntoChunkIterator
        + StaticallySplittable
        + ValueType
{
}

/*
 * Allocation
 */

/// Abstraction for pushing elements of type `T` onto a collection.
pub trait Push<T> {
    fn push(&mut self, element: T);
}

pub trait ExtendFromSlice {
    type Item;
    fn extend_from_slice(&mut self, other: &[Self::Item]);
}

/*
 * Deallocation
 */

/// Truncate the collection to be a specified length.
pub trait Truncate {
    fn truncate(&mut self, len: usize);
}

pub trait Clear {
    /// Remove all elements from the current set without necessarily
    /// deallocating the space previously used.
    fn clear(&mut self);
}

/*
 * Conversion
 */

/// Convert a collection into its underlying representation, effectively
/// stripping any organizational info.
pub trait IntoStorage {
    type StorageType;
    fn into_storage(self) -> Self::StorageType;
}

/// Convert the storage type into another using the `Into` trait.
pub trait StorageInto<Target> {
    type Output;
    fn storage_into(self) -> Self::Output;
}

/// Map the storage type into another given a conversion function.
///
/// This is useful for changing storage is not just a simple `Vec` or slice but a combination of
/// independent collections.
pub trait MapStorage<Out> {
    type Input;
    type Output;
    fn map_storage<F: FnOnce(Self::Input) -> Out>(self, f: F) -> Self::Output;
}

/// Clone the structure of a set replacing its storage with a new one.
pub trait CloneWithStorage<S> {
    type CloneType;
    fn clone_with_storage(&self, storage: S) -> Self::CloneType;
}

/// An analog to the `ToOwned` trait from `std` that works for chunked views.
/// As the name suggests, this version of `ToOwned` takes `self` by value.
pub trait IntoOwned
where
    Self: Sized,
{
    type Owned;
    fn into_owned(self) -> Self::Owned;
    #[inline]
    fn clone_into(self, target: &mut Self::Owned) {
        *target = self.into_owned();
    }
}

/// Blanket implementation of `IntoOwned` for references of types that are already
/// `std::borrow::ToOwned`.
impl<S: std::borrow::ToOwned + ?Sized> IntoOwned for &S {
    type Owned = S::Owned;
    #[inline]
    fn into_owned(self) -> Self::Owned {
        std::borrow::ToOwned::to_owned(self)
    }
}

/// Blanket implementation of `IntoOwned` for mutable references of types that are
/// already `std::borrow::ToOwned`.
impl<S: std::borrow::ToOwned + ?Sized> IntoOwned for &mut S {
    type Owned = S::Owned;
    #[inline]
    fn into_owned(self) -> Self::Owned {
        std::borrow::ToOwned::to_owned(self)
    }
}

/// In contrast to `IntoOwned`, this trait produces a clone with owned data, but
/// potentially borrowed structure of the collection.
pub trait IntoOwnedData
where
    Self: Sized,
{
    type OwnedData;
    fn into_owned_data(self) -> Self::OwnedData;
    #[inline]
    fn clone_into(self, target: &mut Self::OwnedData) {
        *target = self.into_owned_data();
    }
}

/// Blanked implementation of `IntoOwnedData` for references of types that are
/// already `std::borrow::ToOwned`.
impl<S: std::borrow::ToOwned + ?Sized> IntoOwnedData for &S {
    type OwnedData = S::Owned;
    #[inline]
    fn into_owned_data(self) -> Self::OwnedData {
        std::borrow::ToOwned::to_owned(self)
    }
}

/// Blanked implementation of `IntoOwnedData` for mutable references of types that are
/// already `std::borrow::ToOwned`.
impl<S: std::borrow::ToOwned + ?Sized> IntoOwnedData for &mut S {
    type OwnedData = S::Owned;
    #[inline]
    fn into_owned_data(self) -> Self::OwnedData {
        std::borrow::ToOwned::to_owned(self)
    }
}

/*
 * Indexing
 */

// A Note on indexing:
// ===================
// Following the standard library we support indexing by usize only.
// However, Ranges as collections can be supported for other types as well.

/// A helper trait to identify valid types for Range bounds for use as Sets.
pub trait IntBound:
    std::ops::Sub<Self, Output = Self>
    + std::ops::Add<usize, Output = Self>
    + Into<usize>
    + From<usize>
    + Clone
{
}

impl<T> IntBound for T where
    T: std::ops::Sub<Self, Output = Self>
        + std::ops::Add<usize, Output = Self>
        + Into<usize>
        + From<usize>
        + Clone
{
}

/// A definition of a bounded range.
pub trait BoundedRange {
    type Index: IntBound;
    fn start(&self) -> Self::Index;
    fn end(&self) -> Self::Index;
    #[inline]
    fn distance(&self) -> Self::Index {
        self.end() - self.start()
    }
}

/// A type of range whose size is determined at compile time.
/// This represents a range `[start..start + N::value()]`.
/// This aids `UniChunked` types when indexing.
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct StaticRange<N> {
    pub start: usize,
    pub phantom: std::marker::PhantomData<N>,
}

impl<N> StaticRange<N> {
    #[inline]
    pub fn new(start: usize) -> Self {
        StaticRange {
            start,
            phantom: std::marker::PhantomData,
        }
    }
}

impl<N: Unsigned> BoundedRange for StaticRange<N> {
    type Index = usize;
    #[inline]
    fn start(&self) -> usize {
        self.start
    }
    #[inline]
    fn end(&self) -> usize {
        self.start + N::to_usize()
    }
}

/// A helper trait analogous to `SliceIndex` from the standard library.
pub trait GetIndex<'a, S>
where
    S: ?Sized,
{
    type Output;
    /// Gets the value in the set at this index.
    fn get(self, set: &S) -> Option<Self::Output>;
    /// Gets the value in the set at this index.
    ///
    /// # Safety
    ///
    /// The index must be within the bounds of the set to avoid undefined behavior (UB).
    ///
    /// The default implementation panics if the index is out of bounds instead of causing UB.
    #[inline]
    unsafe fn at_unchecked(self, set: &S) -> Self::Output
    where
        Self: Sized,
    {
        self.get(set).expect("Index out of bounds")
    }
}

/// A helper trait like `GetIndex` but for `Isolate` types.
pub trait IsolateIndex<S> {
    type Output;
    /// Attempts to isolate a value in the given set at this index.
    ///
    /// Unlike `get` this function takes `set` by value.
    fn try_isolate(self, set: S) -> Option<Self::Output>;
    /// Attempts to isolate a value in the given set at this index.
    ///
    /// # Safety
    ///
    /// The index must be within the bounds of the collection to avoid undefined behaviour.
    unsafe fn isolate_unchecked(self, set: S) -> Self::Output;
}

/// An index trait for collection types.
/// Here `'i` indicates the lifetime of the input while `'o` indicates that of
/// the output.
pub trait Get<'a, I> {
    type Output;
    fn get(&self, idx: I) -> Option<Self::Output>;
    /// Return a value at the given index. This is provided as the checked
    /// version of `get` that will panic if the equivalent `get` call is `None`,
    /// which typically means that the given index is out of bounds.
    ///
    /// # Panics
    ///
    /// This function will panic if `self.get(idx)` returns `None`.
    #[inline]
    fn at(&self, idx: I) -> Self::Output {
        self.get(idx).expect("Index out of bounds")
    }
    /// Return a value at the given index.
    ///
    /// # Safety
    ///
    /// This is provided as the unchecked version of `get` that has undefined
    /// behavior when the index is out of bounds.
    ///
    /// The default implementation simply calls `at` which will panic, but custom
    /// implementors may omit bounds checks entirely.
    #[inline]
    unsafe fn at_unchecked(&self, idx: I) -> Self::Output {
        self.at(idx)
    }
}

/// A blanket implementation of `Get` for any collection which has an implementation for `GetIndex`.
impl<'a, S, I> Get<'a, I> for S
where
    I: GetIndex<'a, Self>,
{
    type Output = I::Output;
    #[inline]
    fn get(&self, idx: I) -> Option<I::Output> {
        idx.get(self)
    }
}

/// Since we cannot alias mutable references, in order to index a mutable view
/// of elements, we must consume the original mutable reference. Since we can't
/// use slices for general composable collections, its impossible to match
/// against a `&mut self` in the getter function to be able to use it with owned
/// collections, so we opt to have an interface that is designed specifically
/// for mutably borrowed collections. For composable collections, this is better
/// described by a subview operator, which is precisely what this trait
/// represents. Incidentally this can also work for owned collections, which is
/// why it's called `Isolate` instead of `SubView`.
pub trait Isolate<I> {
    type Output;
    /// Unchecked version of `isolate`.
    ///
    /// # Safety
    ///
    /// The given index must be within the bounds of this collection, otherwise
    /// this function may cause undefined behaviour (UB).  In otherwords
    /// `try_isolate(idx)` must not be `None` when called with the same `idx` to
    /// avoid UB.
    unsafe fn isolate_unchecked(self, idx: I) -> Self::Output;
    fn try_isolate(self, idx: I) -> Option<Self::Output>;
    /// Return a value at the given index. This is provided as the checked
    /// version of `try_isolate` that will panic if the equivalent `try_isolate`
    /// call is `None`, which typically means that the given index is out of
    /// bounds.
    ///
    /// # Panics
    ///
    /// This function will panic if `self.get(idx)` returns `None`.
    #[inline]
    fn isolate(self, idx: I) -> Self::Output
    where
        Self: Sized,
    {
        self.try_isolate(idx).expect("Index out of bounds")
    }
}

/// A blanket implementation of `Isolate` for any collection which has an implementation for `IsolateIndex`.
impl<S, I> Isolate<I> for S
where
    I: IsolateIndex<Self>,
{
    type Output = I::Output;
    #[inline]
    unsafe fn isolate_unchecked(self, idx: I) -> Self::Output {
        idx.isolate_unchecked(self)
    }
    #[inline]
    fn try_isolate(self, idx: I) -> Option<Self::Output> {
        idx.try_isolate(self)
    }
}

impl<'a, S, N> GetIndex<'a, S> for StaticRange<N>
where
    S: Set + DynamicRangeIndexType,
    N: Unsigned,
    std::ops::Range<usize>: GetIndex<'a, S>,
{
    type Output = <std::ops::Range<usize> as GetIndex<'a, S>>::Output;

    #[inline]
    fn get(self, set: &S) -> Option<Self::Output> {
        (self.start..self.start + N::to_usize()).get(set)
    }
}

impl<'a, S> GetIndex<'a, S> for std::ops::RangeFrom<usize>
where
    S: Set + ValueType,
    std::ops::Range<usize>: GetIndex<'a, S>,
{
    type Output = <std::ops::Range<usize> as GetIndex<'a, S>>::Output;

    #[inline]
    fn get(self, set: &S) -> Option<Self::Output> {
        (self.start..set.len()).get(set)
    }
}

impl<'a, S: ValueType> GetIndex<'a, S> for std::ops::RangeTo<usize>
where
    std::ops::Range<usize>: GetIndex<'a, S>,
{
    type Output = <std::ops::Range<usize> as GetIndex<'a, S>>::Output;

    #[inline]
    fn get(self, set: &S) -> Option<Self::Output> {
        (0..self.end).get(set)
    }
}

impl<'a, S> GetIndex<'a, S> for std::ops::RangeFull
where
    S: Set + ValueType,
    std::ops::Range<usize>: GetIndex<'a, S>,
{
    type Output = <std::ops::Range<usize> as GetIndex<'a, S>>::Output;

    #[inline]
    fn get(self, set: &S) -> Option<Self::Output> {
        (0..set.len()).get(set)
    }
}

impl<'a, S: ValueType> GetIndex<'a, S> for std::ops::RangeInclusive<usize>
where
    std::ops::Range<usize>: GetIndex<'a, S>,
{
    type Output = <std::ops::Range<usize> as GetIndex<'a, S>>::Output;

    #[allow(clippy::range_plus_one)]
    #[inline]
    fn get(self, set: &S) -> Option<Self::Output> {
        if *self.end() == usize::max_value() {
            None
        } else {
            (*self.start()..*self.end() + 1).get(set)
        }
    }
}

impl<'a, S: ValueType> GetIndex<'a, S> for std::ops::RangeToInclusive<usize>
where
    std::ops::Range<usize>: GetIndex<'a, S>,
{
    type Output = <std::ops::Range<usize> as GetIndex<'a, S>>::Output;

    #[inline]
    fn get(self, set: &S) -> Option<Self::Output> {
        (0..=self.end).get(set)
    }
}

impl<S, N> IsolateIndex<S> for StaticRange<N>
where
    S: Set + DynamicRangeIndexType,
    N: Unsigned,
    std::ops::Range<usize>: IsolateIndex<S>,
{
    type Output = <std::ops::Range<usize> as IsolateIndex<S>>::Output;

    #[inline]
    unsafe fn isolate_unchecked(self, set: S) -> Self::Output {
        IsolateIndex::isolate_unchecked(self.start..self.start + N::to_usize(), set)
    }
    #[inline]
    fn try_isolate(self, set: S) -> Option<Self::Output> {
        IsolateIndex::try_isolate(self.start..self.start + N::to_usize(), set)
    }
}

impl<S> IsolateIndex<S> for std::ops::RangeFrom<usize>
where
    S: Set + ValueType,
    std::ops::Range<usize>: IsolateIndex<S>,
{
    type Output = <std::ops::Range<usize> as IsolateIndex<S>>::Output;

    #[inline]
    unsafe fn isolate_unchecked(self, set: S) -> Self::Output {
        IsolateIndex::isolate_unchecked(self.start..set.len(), set)
    }
    #[inline]
    fn try_isolate(self, set: S) -> Option<Self::Output> {
        IsolateIndex::try_isolate(self.start..set.len(), set)
    }
}

impl<S: ValueType> IsolateIndex<S> for std::ops::RangeTo<usize>
where
    std::ops::Range<usize>: IsolateIndex<S>,
{
    type Output = <std::ops::Range<usize> as IsolateIndex<S>>::Output;

    #[inline]
    unsafe fn isolate_unchecked(self, set: S) -> Self::Output {
        IsolateIndex::isolate_unchecked(0..self.end, set)
    }
    #[inline]
    fn try_isolate(self, set: S) -> Option<Self::Output> {
        IsolateIndex::try_isolate(0..self.end, set)
    }
}

impl<S: ValueType> IsolateIndex<S> for std::ops::RangeFull
where
    S: Set,
    std::ops::Range<usize>: IsolateIndex<S>,
{
    type Output = <std::ops::Range<usize> as IsolateIndex<S>>::Output;

    #[inline]
    unsafe fn isolate_unchecked(self, set: S) -> Self::Output {
        IsolateIndex::isolate_unchecked(0..set.len(), set)
    }
    #[inline]
    fn try_isolate(self, set: S) -> Option<Self::Output> {
        IsolateIndex::try_isolate(0..set.len(), set)
    }
}

impl<S: ValueType> IsolateIndex<S> for std::ops::RangeInclusive<usize>
where
    S: Set,
    std::ops::Range<usize>: IsolateIndex<S>,
{
    type Output = <std::ops::Range<usize> as IsolateIndex<S>>::Output;

    #[allow(clippy::range_plus_one)]
    #[inline]
    unsafe fn isolate_unchecked(self, set: S) -> Self::Output {
        IsolateIndex::isolate_unchecked(*self.start()..*self.end() + 1, set)
    }
    #[allow(clippy::range_plus_one)]
    #[inline]
    fn try_isolate(self, set: S) -> Option<Self::Output> {
        if *self.end() == usize::max_value() {
            None
        } else {
            IsolateIndex::try_isolate(*self.start()..*self.end() + 1, set)
        }
    }
}

impl<S: ValueType> IsolateIndex<S> for std::ops::RangeToInclusive<usize>
where
    S: Set,
    std::ops::Range<usize>: IsolateIndex<S>,
{
    type Output = <std::ops::Range<usize> as IsolateIndex<S>>::Output;

    #[inline]
    unsafe fn isolate_unchecked(self, set: S) -> Self::Output {
        IsolateIndex::isolate_unchecked(0..=self.end, set)
    }
    #[inline]
    fn try_isolate(self, set: S) -> Option<Self::Output> {
        IsolateIndex::try_isolate(0..=self.end, set)
    }
}

/// A helper trait to split a set into two sets at a given index.
/// This trait is used to implement iteration over `ChunkedView`s.
pub trait SplitAt
where
    Self: Sized,
{
    /// Split self into two sets at the given midpoint.
    /// This function is analogous to `<[T]>::split_at`.
    fn split_at(self, mid: usize) -> (Self, Self);
}

/// A helper trait to split owned sets into two sets at a given index.
/// This trait is used to implement iteration over `Chunked`s.
pub trait SplitOff {
    /// Split self into two sets at the given midpoint.
    /// This function is analogous to `Vec::split_off`.
    /// `self` contains elements `[0, mid)`, and The returned `Self` contains
    /// elements `[mid, len)`.
    fn split_off(&mut self, mid: usize) -> Self;
}

/// Split off a number of elements from the beginning of the collection where the number is determined at compile time.
pub trait SplitPrefix<N>
where
    Self: Sized,
{
    type Prefix;

    /// Split `N` items from the beginning of the collection.
    ///
    /// Return `None` if there are not enough items.
    fn split_prefix(self) -> Option<(Self::Prefix, Self)>;
}

/// Split out the first element of a collection.
pub trait SplitFirst
where
    Self: Sized,
{
    type First;
    fn split_first(self) -> Option<(Self::First, Self)>;

    /// Split off the first element without checking if one exists.
    ///
    /// # Safety
    ///
    /// The collection must have at least one element otherwise this function
    /// may cause undefined behaviour if implemented.
    ///
    /// The default implementation simply calls unwrap on `split_first`.
    #[inline]
    unsafe fn split_first_unchecked(self) -> (Self::First, Self) {
        self.split_first().unwrap()
    }
}

/// Get an immutable reference to the underlying storage type.
pub trait Storage {
    type Storage: ?Sized;
    fn storage(&self) -> &Self::Storage;
}

impl<S: Storage + ?Sized> Storage for &S {
    type Storage = S::Storage;
    #[inline]
    fn storage(&self) -> &Self::Storage {
        S::storage(*self)
    }
}

impl<S: Storage + ?Sized> Storage for &mut S {
    type Storage = S::Storage;
    #[inline]
    fn storage(&self) -> &Self::Storage {
        S::storage(*self)
    }
}

pub trait StorageView<'a> {
    type StorageView;
    fn storage_view(&'a self) -> Self::StorageView;
}

/// Get a mutable reference to the underlying storage type.
pub trait StorageMut: Storage {
    fn storage_mut(&mut self) -> &mut Self::Storage;
}

impl<S: StorageMut + ?Sized> StorageMut for &mut S {
    #[inline]
    fn storage_mut(&mut self) -> &mut Self::Storage {
        S::storage_mut(*self)
    }
}

/// A helper trait for constructing placeholder sets for use in `std::mem::replace`.
///
/// These don't necessarily have to correspond to bona-fide sets and can
/// potentially produce invalid sets. For this reason this function can be
/// unsafe since it can generate collections that don't uphold their invariants
/// for the sake of avoiding allocations.
pub trait Dummy {
    /// Constructs a potentially invalid instance of a type.
    ///
    /// This function is intended to be used in conjunction with
    /// `std::mem::replace` to avoid allocations for types whose `Default`
    /// implementations can cause allocations or other potentially expensive
    /// computations. As such `dummy` types may be invalid and should not be
    /// used other than as placeholders to avoid undefined behaviour.
    ///
    /// # Safety
    ///
    /// Instances created with this function can cause undefinied behaviour if
    /// used other than as placeholders for real values for functions like
    /// `std::mem::replace`.
    unsafe fn dummy() -> Self;
}

/// A helper trait used to help implement the Subset. This trait allows
/// abstract collections to remove a number of elements from the
/// beginning, which is what we need for subsets.
// Technically this is a deallocation trait, but it's only used to enable
// iteration on subsets so it's here.
pub trait RemovePrefix {
    /// Remove `n` elements from the beginning.
    fn remove_prefix(&mut self, n: usize);
}

/// This trait generalizes the method `chunks` available on slices in the
/// standard library. Collections that can be chunked by a runtime stride should
/// implement this behaviour such that they can be composed with `ChunkedN`
/// types.
pub trait IntoChunkIterator {
    type Item;
    type IterType: Iterator<Item = Self::Item>;

    /// Produce a chunk iterator with the given stride `chunk_size`.
    /// One notable difference between this trait and `chunks*` methods on slices is that
    /// `chunks_iter` should panic when the underlying data cannot split into `chunk_size` sized
    /// chunks exactly.
    fn into_chunk_iter(self, chunk_size: usize) -> Self::IterType;
}

// Implement IntoChunkIterator for all types that implement Set, SplitAt and Dummy.
// This should be reimplemented like IntoStaticChunkIterator to avoid expensive iteration of allocating types.
impl<S> IntoChunkIterator for S
where
    S: Set + SplitAt + Dummy,
{
    type Item = S;
    type IterType = ChunkedNIter<S>;

    #[inline]
    fn into_chunk_iter(self, chunk_size: usize) -> Self::IterType {
        assert_eq!(self.len() % chunk_size, 0);
        ChunkedNIter {
            chunk_size,
            data: self,
        }
    }
}

/// Parallel version of `IntoChunkIterator`.
#[cfg(feature = "rayon")]
pub trait IntoParChunkIterator {
    type Item: Send;
    type IterType: rayon::iter::IndexedParallelIterator<Item = Self::Item>;

    fn into_par_chunk_iter(self, chunk_size: usize) -> Self::IterType;
}

/// A trait intended to be implemented on collection types to define the type of
/// a statically sized chunk in this collection.
/// This trait is required for composing with `UniChunked`.
pub trait UniChunkable<N> {
    type Chunk;
}

/// Iterate over chunks whose size is determined at compile time.
///
/// Note that each chunk may not be a simple array, although a statically sized
/// chunk of a slice is an array.
pub trait IntoStaticChunkIterator<N>
where
    Self: Sized + Set,
    N: Unsigned,
{
    type Item;
    type IterType: Iterator<Item = Self::Item>;

    /// This function should panic if this collection length is not a multiple
    /// of `N`.
    fn into_static_chunk_iter(self) -> Self::IterType;

    /// Simply call this method for all types that implement `SplitPrefix<N>`.
    #[inline]
    fn into_generic_static_chunk_iter(self) -> UniChunkedIter<Self, N> {
        assert_eq!(self.len() % N::to_usize(), 0);
        UniChunkedIter {
            chunk_size: std::marker::PhantomData,
            data: self,
        }
    }
}

/// A trait that allows the container to allocate additional space without
/// changing any of the data. The container should allocate space for at least
/// `n` additional elements.
///
/// Composite collections such a `Chunked` or `Select` may choose to only
/// reserve primary level storage if the amount of total storage required cannot
/// be specified by a single number in `reserve`. This is the default behaviour
/// of the `reserve` function below. The `reserve_with_storage` method allows
/// the caller to also specify the amount of storage needed for the container at
/// the lowest level.
pub trait Reserve {
    #[inline]
    fn reserve(&mut self, n: usize) {
        self.reserve_with_storage(n, 0); // By default we ignore storage.
    }
    fn reserve_with_storage(&mut self, n: usize, storage_n: usize);
}

/*
 * New experimental traits below
 */

pub trait SwapChunks {
    /// Swap equal sized contiguous chunks in this collection.
    fn swap_chunks(&mut self, begin_a: usize, begin_b: usize, chunk_size: usize);
}

pub trait Sort {
    /// Sort the given indices into this collection with respect to values provided by this collection.
    fn sort_indices(&self, indices: &mut [usize]);
}

pub trait PermuteInPlace {
    fn permute_in_place(&mut self, indices: &[usize], seen: &mut [bool]);
}

/// This trait is used to produce the chunk size of a collection if it contains uniformly chunked
/// elements.
pub trait ChunkSize {
    fn chunk_size(&self) -> usize;
}

/// Clone self into a potentially different collection.
pub trait CloneIntoOther<T = Self>
where
    T: ?Sized,
{
    fn clone_into_other(&self, other: &mut T);
}

impl<T: Clone> CloneIntoOther<&mut T> for &T {
    #[inline]
    fn clone_into_other(&self, other: &mut &mut T) {
        other.clone_from(self);
    }
}

pub trait AtomIterator<'a> {
    type Item;
    type Iter: Iterator<Item = Self::Item>;
    fn atom_iter(&'a self) -> Self::Iter;
}

pub trait AtomMutIterator<'a> {
    type Item;
    type Iter: Iterator<Item = Self::Item>;
    fn atom_mut_iter(&'a mut self) -> Self::Iter;
}

// Blanket implementations of AtomIterator/AtomMutIterator for references
impl<'a, S: ?Sized> AtomIterator<'a> for &S
where
    S: AtomIterator<'a>,
{
    type Item = S::Item;
    type Iter = S::Iter;
    #[inline]
    fn atom_iter(&'a self) -> Self::Iter {
        S::atom_iter(self)
    }
}

impl<'a, S: ?Sized> AtomMutIterator<'a> for &mut S
where
    S: AtomMutIterator<'a>,
{
    type Item = S::Item;
    type Iter = S::Iter;
    #[inline]
    fn atom_mut_iter(&'a mut self) -> Self::Iter {
        S::atom_mut_iter(self)
    }
}

/// A wraper for a zip iterator that unwraps its contents into a custom struct.
pub struct StructIter<I, T> {
    iter: I,
    phantom: std::marker::PhantomData<T>,
}

impl<I, T> StructIter<I, T> {
    #[inline]
    pub fn new(iter: I) -> Self {
        StructIter {
            iter,
            phantom: std::marker::PhantomData,
        }
    }
}

impl<I: Iterator, T: From<I::Item>> Iterator for StructIter<I, T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(From::from)
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
    #[inline]
    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.iter.nth(n).map(From::from)
    }
}

impl<I, T> DoubleEndedIterator for StructIter<I, T>
where
    I: DoubleEndedIterator + ExactSizeIterator,
    T: From<I::Item>,
{
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back().map(From::from)
    }
    #[inline]
    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
        self.iter.nth_back(n).map(From::from)
    }
}

/// An iterator whose items are random-accessible efficiently
///
/// # Safety
///
/// The iterator's .len() and size_hint() must be exact.
/// `.len()` must be cheap to call.
///
/// .get_unchecked() must return distinct mutable references for distinct
/// indices (if applicable), and must return a valid reference if index is in
/// 0..self.len().
pub unsafe trait TrustedRandomAccess: ExactSizeIterator {
    /// Gets the element at the given index from this iterator.
    ///
    /// # Safety
    ///
    /// The `index` must not exceed the number of items produced by this
    /// iterator to avoid undefined behaviour.
    unsafe fn get_unchecked(&mut self, index: usize) -> Self::Item;
    /// Returns `true` if getting an iterator element may have
    /// side effects. Remember to take inner iterators into account.
    #[inline]
    fn may_have_side_effect() -> bool {
        false
    }
}

/*
 * Tests
 */

///```compile_fail
/// use flatk::*;
/// // This shouldn't compile
/// let v: Vec<usize> = (1..=10).collect();
/// let chunked = Chunked::from_offsets(vec![0, 3, 5, 8, 10], v);
/// let mut chunked = Chunked::from_offsets(vec![0, 1, 4], chunked);
/// let mut mut_view = chunked.view_mut();
///
/// // The .at should not work with a mutable view.
/// let mut1 = mut_view.at(1).at(1);
/// // We should at least fail to compile when trying to get a second mut ref.
/// let mut2 = mut_view.at(1).at(1);
///```
#[doc(hidden)]
pub fn multiple_mut_refs_compile_test() {}

#[cfg(test)]
mod tests {
    use super::*;

    /// Test iteration of a `Chunked` inside a `Chunked`.
    #[test]
    fn var_of_uni_iter_test() {
        let u0 = Chunked2::from_flat((1..=12).collect::<Vec<_>>());
        let v1 = Chunked::from_offsets(vec![0, 2, 3, 6], u0);

        let mut iter1 = v1.iter();
        let v0 = iter1.next().unwrap();
        let mut iter0 = v0.iter();
        assert_eq!(Some(&[1, 2]), iter0.next());
        assert_eq!(Some(&[3, 4]), iter0.next());
        assert_eq!(None, iter0.next());
        let v0 = iter1.next().unwrap();
        let mut iter0 = v0.iter();
        assert_eq!(Some(&[5, 6]), iter0.next());
        assert_eq!(None, iter0.next());
        let v0 = iter1.next().unwrap();
        let mut iter0 = v0.iter();
        assert_eq!(Some(&[7, 8]), iter0.next());
        assert_eq!(Some(&[9, 10]), iter0.next());
        assert_eq!(Some(&[11, 12]), iter0.next());
        assert_eq!(None, iter0.next());
    }

    #[cfg(feature = "derive")]
    mod derive_tests {
        /*
         * Test the use of the `Component` derive macro
         */

        // Needed to make the derive macro work in the test context.
        use super::*;
        use crate as flatk;
        use flatk::Component;

        #[derive(Copy, Clone, Debug, PartialEq, Component)]
        struct MyComponent<X, V> {
            // Unused parameter, that is simply copied through to views and items.
            id: usize,
            x: X,
            v: V,
        }

        #[test]
        fn component_derive_test() {
            let mut e = MyComponent {
                id: 0,
                x: vec![1.0; 12],
                v: vec![7.0; 12],
            };

            // Get the size of the component set
            assert_eq!(e.len(), 12);

            // Construct a View and Get a single element from MyComponent.
            assert_eq!(
                e.view().at(0),
                MyComponent {
                    id: 0,
                    x: &1.0,
                    v: &7.0
                }
            );

            // Construct a ViewMut and modify a single entry
            let entry_mut = e.view_mut().isolate(0);
            *entry_mut.x = 13.0;
            *entry_mut.v = 14.0;
            assert_eq!(
                e.view().at(0),
                MyComponent {
                    id: 0,
                    x: &13.0,
                    v: &14.0
                }
            );

            let chunked3 = Chunked3::from_flat(e.clone());
            assert_eq!(
                chunked3.view().at(0),
                MyComponent {
                    id: 0,
                    x: &[13.0, 1.0, 1.0],
                    v: &[14.0, 7.0, 7.0]
                }
            );

            let chunked = Chunked::from_sizes(vec![1, 3], Chunked3::from_flat(e));

            assert_eq!(
                chunked.view().at(0).at(0),
                MyComponent {
                    id: 0,
                    x: &[13.0, 1.0, 1.0],
                    v: &[14.0, 7.0, 7.0]
                }
            );
        }
    }
}