1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
use approx::AbsDiffEq;
use crate::{Aabb, Point, Scalar, Vector};
/// An n-dimensional circle
///
/// The dimensionality of the circle is defined by the const generic `D`
/// parameter.
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct Circle<const D: usize> {
center: Point<D>,
a: Vector<D>,
b: Vector<D>,
}
impl<const D: usize> Circle<D> {
/// Construct a circle
///
/// # Panics
///
/// Panics, if any of the following requirements are not met:
///
/// - The circle radius (defined by the length of `a` and `b`) must not be
/// zero.
/// - `a` and `b` must be of equal length.
/// - `a` and `b` must be perpendicular to each other.
pub fn new(
center: impl Into<Point<D>>,
a: impl Into<Vector<D>>,
b: impl Into<Vector<D>>,
) -> Self {
let center = center.into();
let a = a.into();
let b = b.into();
assert_eq!(
a.magnitude(),
b.magnitude(),
"`a` and `b` must be of equal length"
);
assert_ne!(
a.magnitude(),
Scalar::ZERO,
"circle radius must not be zero"
);
// Requiring the vector to be *precisely* perpendicular is not
// practical, because of numerical inaccuracy. This epsilon value seems
// seems to work for now, but maybe it needs to become configurable.
assert!(
a.dot(&b) < Scalar::default_epsilon(),
"`a` and `b` must be perpendicular to each other"
);
Self { center, a, b }
}
/// Construct a `Circle` from a center point and a radius
pub fn from_center_and_radius(
center: impl Into<Point<D>>,
radius: impl Into<Scalar>,
) -> Self {
let radius = radius.into();
let mut a = [Scalar::ZERO; D];
let mut b = [Scalar::ZERO; D];
a[0] = radius;
b[1] = radius;
Self::new(center, a, b)
}
/// Access the center point of the circle
pub fn center(&self) -> Point<D> {
self.center
}
/// Access the radius of the circle
pub fn radius(&self) -> Scalar {
self.a().magnitude()
}
/// Access the vector that defines the starting point of the circle
///
/// The point where this vector points from the circle center, is the zero
/// coordinate of the circle's coordinate system. The length of the vector
/// defines the circle's radius.
///
/// Please also refer to [`Self::b`].
pub fn a(&self) -> Vector<D> {
self.a
}
/// Access the vector that defines the plane of the circle
///
/// Also defines the direction of the circle's coordinate system. The length
/// is equal to the circle's radius, and this vector is perpendicular to
/// [`Self::a`].
pub fn b(&self) -> Vector<D> {
self.b
}
/// Create a new instance that is reversed
#[must_use]
pub fn reverse(mut self) -> Self {
self.b = -self.b;
self
}
/// Convert a `D`-dimensional point to circle coordinates
///
/// Converts the provided point into circle coordinates between `0.`
/// (inclusive) and `PI * 2.` (exclusive).
///
/// Projects the point onto the circle before computing circle coordinate,
/// ignoring the radius. This is done to make this method robust against
/// floating point accuracy issues.
///
/// Callers are advised to be careful about the points they pass, as the
/// point not being on the curve, intentional or not, will not result in an
/// error.
pub fn point_to_circle_coords(
&self,
point: impl Into<Point<D>>,
) -> Point<1> {
let vector = (point.into() - self.center).to_uv();
let atan = Scalar::atan2(vector.v, vector.u);
let coord = if atan >= Scalar::ZERO {
atan
} else {
atan + Scalar::TAU
};
Point::from([coord])
}
/// Convert a point in circle coordinates into a `D`-dimensional point
pub fn point_from_circle_coords(
&self,
point: impl Into<Point<1>>,
) -> Point<D> {
self.center + self.vector_from_circle_coords(point.into().coords)
}
/// Convert a vector in circle coordinates into a `D`-dimensional point
pub fn vector_from_circle_coords(
&self,
vector: impl Into<Vector<1>>,
) -> Vector<D> {
let angle = vector.into().t;
let (sin, cos) = angle.sin_cos();
self.a * cos + self.b * sin
}
/// Calculate an AABB for the circle
pub fn aabb(&self) -> Aabb<D> {
let center_to_min_max = Vector::from_component(self.radius());
Aabb {
min: self.center() - center_to_min_max,
max: self.center() + center_to_min_max,
}
}
}
impl<const D: usize> approx::AbsDiffEq for Circle<D> {
type Epsilon = <Scalar as approx::AbsDiffEq>::Epsilon;
fn default_epsilon() -> Self::Epsilon {
Scalar::default_epsilon()
}
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.center.abs_diff_eq(&other.center, epsilon)
&& self.a.abs_diff_eq(&other.a, epsilon)
&& self.b.abs_diff_eq(&other.b, epsilon)
}
}
#[cfg(test)]
mod tests {
use std::f64::consts::{FRAC_PI_2, PI};
use crate::{Point, Vector};
use super::Circle;
#[test]
fn point_to_circle_coords() {
let circle = Circle {
center: Point::from([1., 2., 3.]),
a: Vector::from([1., 0., 0.]),
b: Vector::from([0., 1., 0.]),
};
assert_eq!(
circle.point_to_circle_coords([2., 2., 3.]),
Point::from([0.]),
);
assert_eq!(
circle.point_to_circle_coords([1., 3., 3.]),
Point::from([FRAC_PI_2]),
);
assert_eq!(
circle.point_to_circle_coords([0., 2., 3.]),
Point::from([PI]),
);
assert_eq!(
circle.point_to_circle_coords([1., 1., 3.]),
Point::from([FRAC_PI_2 * 3.]),
);
}
}