1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
use crate::{Point, Scalar};

/// Calculated geometry that is useful when dealing with an arc
pub struct Arc {
    /// Start point of the arc
    pub start: Point<2>,
    /// End point of the arc
    pub end: Point<2>,
    /// Center of the circle the arc is constructed on
    pub center: Point<2>,
    /// Radius of the circle the arc is constructed on
    pub radius: Scalar,
    /// Angle of `start` relative to `center`, in radians
    ///
    /// Guaranteed to be less than `end_angle`.
    pub start_angle: Scalar,
    /// Angle of `end` relative to `center`, in radians
    ///
    /// Guaranteed to be greater than `end_angle`.
    pub end_angle: Scalar,
    /// True if `start` and `end` were switched to ensure `end_angle` > `start_angle`
    pub flipped_construction: bool,
}

impl Arc {
    /// Constructs an [`Arc`] from two endpoints and the associated angle.
    pub fn from_endpoints_and_angle(
        p0: impl Into<Point<2>>,
        p1: impl Into<Point<2>>,
        angle: Scalar,
    ) -> Self {
        use num_traits::Float;

        let (p0, p1) = (p0.into(), p1.into());

        let flipped_construction = angle <= Scalar::ZERO;
        let angle_rad = angle.abs();

        let [p0, p1] = if flipped_construction {
            [p1, p0]
        } else {
            [p0, p1]
        };

        let (uv_factor, end_angle_offset) = if angle_rad > Scalar::PI {
            (Scalar::from_f64(-1.), Scalar::TAU)
        } else {
            (Scalar::ONE, Scalar::ZERO)
        };
        let [[x0, y0], [x1, y1]] = [p0, p1].map(|p| p.coords.components);
        // https://math.stackexchange.com/questions/27535/how-to-find-center-of-an-arc-given-start-point-end-point-radius-and-arc-direc
        // distance between endpoints
        let d = ((x1 - x0).powi(2) + (y1 - y0).powi(2)).sqrt();
        // radius
        let r = d / (2. * (angle_rad.into_f64() / 2.).sin());
        // distance from center to midpoint between endpoints
        let h = (r.powi(2) - (d.powi(2) / 4.)).sqrt();
        // (u, v) is the unit normal in the direction of p1 - p0
        let u = (x1 - x0) / d * uv_factor;
        let v = (y1 - y0) / d * uv_factor;
        // (cx, cy) is the center of the circle
        let cx = ((x0 + x1) / 2.) - h * v;
        let cy = ((y0 + y1) / 2.) + h * u;
        let start_angle = (y0 - cy).atan2(x0 - cx);
        let end_angle = (y1 - cy).atan2(x1 - cx) + end_angle_offset;
        Self {
            start: p0,
            end: p1,
            center: Point::from([cx, cy]),
            radius: r,
            start_angle,
            end_angle,
            flipped_construction,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{Point, Scalar};

    use super::Arc;

    use approx::AbsDiffEq;

    fn check_arc_calculation(center: [f64; 2], radius: f64, a0: f64, a1: f64) {
        let angle = a1 - a0;

        let p0 = [center[0] + radius * a0.cos(), center[1] + radius * a0.sin()];
        let p1 = [center[0] + radius * a1.cos(), center[1] + radius * a1.sin()];

        let arc = Arc::from_endpoints_and_angle(p0, p1, Scalar::from(angle));

        let epsilon = Scalar::default_epsilon() * 10.;

        dbg!(center, arc.center);
        dbg!(arc.start_angle);
        dbg!(arc.end_angle);
        dbg!(arc.flipped_construction);
        assert!(arc.center.abs_diff_eq(&Point::from(center), epsilon));
        assert!(arc.radius.abs_diff_eq(&Scalar::from(radius), epsilon));

        if a0 < a1 {
            assert!(!arc.flipped_construction);
            assert!(arc.start_angle.abs_diff_eq(&Scalar::from(a0), epsilon));
            assert!(arc.end_angle.abs_diff_eq(&Scalar::from(a1), epsilon));
        } else {
            assert!(arc.flipped_construction);
            assert!(arc.end_angle.abs_diff_eq(&Scalar::from(a0), epsilon));
            assert!(arc.start_angle.abs_diff_eq(&Scalar::from(a1), epsilon));
        }
    }

    #[test]
    fn arc_construction() {
        check_arc_calculation(
            [0., 0.],
            1.,
            0_f64.to_radians(),
            90_f64.to_radians(),
        );
        check_arc_calculation(
            [-4., 2.],
            1.5,
            5_f64.to_radians(),
            -5_f64.to_radians(),
        );
        check_arc_calculation(
            [3., 8.],
            3.,
            0_f64.to_radians(),
            100_f64.to_radians(),
        );
        check_arc_calculation(
            [1., -1.],
            1.,
            90_f64.to_radians(),
            180_f64.to_radians(),
        );
        check_arc_calculation(
            [0., 0.],
            1.,
            0_f64.to_radians(),
            270_f64.to_radians(),
        );
    }
}