1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
use std::fmt;

use fj_math::{Circle, Line, Point, Scalar, Vector};

use crate::local::Local;

use super::{Curve, GlobalVertex, Surface, Vertex};

/// An edge of a shape
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct Edge {
    /// Access the curve that defines the edge's geometry
    ///
    /// The edge can be a segment of the curve that is bounded by two vertices,
    /// or if the curve is continuous (i.e. connects to itself), the edge could
    /// be defined by the whole curve, and have no bounding vertices.
    pub curve: Local<Curve<2>>,

    /// Access the vertices that bound the edge on the curve
    ///
    /// If there are no such vertices, that means that both the curve and the
    /// edge are continuous (i.e. connected to themselves).
    pub vertices: VerticesOfEdge,
}

impl Edge {
    /// Create a circle from the given radius
    pub fn circle_from_radius(radius: Scalar) -> Self {
        let curve_local = Curve::Circle(Circle {
            center: Point::origin(),
            a: Vector::from([radius, Scalar::ZERO]),
            b: Vector::from([Scalar::ZERO, radius]),
        });
        let curve_canonical = Curve::Circle(Circle {
            center: Point::origin(),
            a: Vector::from([radius, Scalar::ZERO, Scalar::ZERO]),
            b: Vector::from([Scalar::ZERO, radius, Scalar::ZERO]),
        });

        Edge {
            curve: Local::new(curve_local, curve_canonical),
            vertices: VerticesOfEdge::none(),
        }
    }

    /// Create a line segment from two points
    pub fn line_segment_from_points(
        surface: &Surface,
        points: [impl Into<Point<2>>; 2],
    ) -> Self {
        let points = points.map(Into::into);

        let global_vertices = points.map(|position| {
            let position = surface.point_from_surface_coords(position);
            GlobalVertex::from_position(position)
        });

        let curve_local = Curve::Line(Line::from_points(points));
        let curve_canonical = {
            let points =
                global_vertices.map(|global_vertex| global_vertex.position());
            Curve::Line(Line::from_points(points))
        };

        let vertices = {
            let [a, b] = global_vertices;
            [
                Vertex::new(Point::from([0.]), a),
                Vertex::new(Point::from([1.]), b),
            ]
        };

        Self {
            curve: Local::new(curve_local, curve_canonical),
            vertices: VerticesOfEdge::from_vertices(vertices),
        }
    }

    /// Access this edge's curve
    pub fn curve(&self) -> Curve<3> {
        self.curve.global()
    }

    /// Access this edge's vertices
    pub fn vertices(&self) -> Option<[Vertex; 2]> {
        self.vertices.0
    }
}

impl fmt::Display for Edge {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.vertices() {
            Some(vertices) => {
                let [a, b] = vertices.map(|vertex| vertex.position());
                write!(f, "edge from {:?} to {:?}", a, b)?
            }
            None => write!(f, "continuous edge")?,
        }

        write!(f, " on {}", self.curve())?;

        Ok(())
    }
}

/// The vertices that bound an edge
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct VerticesOfEdge(Option<[Vertex; 2]>);

impl VerticesOfEdge {
    /// Construct an instance of `VerticesOfEdge` from zero or two vertices
    pub fn new(vertices: Option<[Vertex; 2]>) -> Self {
        Self(vertices)
    }

    /// Construct an instance of `VerticesOfEdge` from two vertices
    pub fn from_vertices(vertices: [Vertex; 2]) -> Self {
        Self(Some(vertices))
    }

    /// Construct an instance of `VerticesOfEdge` without vertices
    pub fn none() -> Self {
        Self(None)
    }

    /// Determine whether the other instance has the same vertices
    ///
    /// The order of vertices is ignored.
    pub fn are_same(&self, other: &Self) -> bool {
        if let Some([a, b]) = self.0 {
            if let Some(other) = other.0 {
                return [a, b] == other || [b, a] == other;
            }
        }

        false
    }

    /// Access the two vertices
    ///
    /// # Panics
    ///
    /// Panics, if the edge has no vertices.
    pub fn expect_vertices(self) -> [Vertex; 2] {
        self.0.expect("Expected edge to have vertices")
    }

    /// Iterate over the vertices, if any
    pub fn iter(&self) -> impl Iterator<Item = &Vertex> {
        self.0.iter().flatten()
    }

    /// Reverse the order of vertices
    ///
    /// Makes sure that the local coordinates are still correct.
    pub fn reverse(self) -> Self {
        Self(self.0.map(|[a, b]| {
            [
                Vertex::new(-b.position(), b.global()),
                Vertex::new(-a.position(), a.global()),
            ]
        }))
    }

    /// Map each vertex using the provided function
    pub fn map<F>(self, f: F) -> Self
    where
        F: FnMut(Vertex) -> Vertex,
    {
        Self(self.convert(f))
    }

    /// Convert each vertex using the provided function
    pub fn convert<F, T>(self, f: F) -> Option<[T; 2]>
    where
        F: FnMut(Vertex) -> T,
    {
        self.0.map(|vertices| vertices.map(f))
    }

    /// Convert each vertex using the provided fallible function
    pub fn try_convert<F, T, E>(self, f: F) -> Result<Option<[T; 2]>, E>
    where
        F: FnMut(Vertex) -> Result<T, E>,
    {
        // Can be cleaned up using `try_map`, once that is stable:
        // https://doc.rust-lang.org/std/primitive.array.html#method.try_map
        let vertices: Option<[Result<_, E>; 2]> = self.convert(f);
        let vertices = match vertices {
            Some([a, b]) => Some([a?, b?]),
            None => None,
        };

        Ok(vertices)
    }
}