fixedstr 0.5.9

strings of constant maximum size that can be copied and stack allocated using const generics
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
//! Module for fstr type
#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused_parens)]
#![allow(unused_assignments)]
#![allow(unused_mut)]
#![allow(dead_code)]

#[cfg(feature = "std")]
extern crate std;
use crate::tiny_internal::*;
use crate::zero_terminated::*;
use core::cmp::{min, Ordering};
use core::ops::Add;
use std::eprintln;
use std::string::String;

/// **This type is only available with the `std` (or `fstr`) feature.**
/// A `fstr<N>` is a string of up to const N bytes, using a separate variable to store the length.
/// This type is not as memory-efficient as some other types such as str4-str256.  This is also the only type of the crate that does not support `no_std`.
#[derive(Copy, Clone, Eq)]
pub struct fstr<const N: usize> {
    chrs: [u8; N],
    len: usize, // length will be <=N
} //fstr
impl<const N: usize> fstr<N> {
    /// creates a new `fstr<N>` with given &str.  If the length of s exceeds
    /// N, the extra characters are ignored and a **warning is sent to stderr**.
    pub fn make(s: &str) -> fstr<N> {
        let bytes = s.as_bytes(); // &[u8]
        let mut blen = bytes.len();
        if (blen > N) {
            eprintln!("!Fixedstr Warning in fstr::make: length of string literal \"{}\" exceeds the capacity of type fstr<{}>; string truncated",s,N);
            blen = N;
        }
        let mut chars = [0u8; N];
        let mut i = 0;
        let limit = min(N, blen);
        chars[..limit].clone_from_slice(&bytes[..limit]);
        /* //replaced re performance lint
        for i in 0..blen
        {
          if i<N {chars[i] = bytes[i];} else {break;}
        }
        */
        fstr {
            chrs: chars,
            len: blen, /* as u16 */
        }
    } //make

    /// Version of make that does not print warning to stderr.  If the
    /// capacity limit is exceeded, the extra characters are ignored.
    pub fn create(s: &str) -> fstr<N> {
        let bytes = s.as_bytes(); // &[u8]
        let mut blen = bytes.len();
        if (blen > N) {
            blen = N;
        }
        let mut chars = [0u8; N];
        let mut i = 0;
        let limit = min(N, blen);
        chars[..limit].clone_from_slice(&bytes[..limit]);
        fstr {
            chrs: chars,
            len: blen,
        }
    } //create

    /// version of make that does not truncate, if s exceeds capacity,
    /// an Err result is returned containing s
    pub fn try_make(s: &str) -> Result<fstr<N>, &str> {
        if s.len() > N {
            Err(s)
        } else {
            Ok(fstr::make(s))
        }
    }

/// const constructor, to be called from const contexts.  However, as
/// const constructors are restricted from using iterators, it's slightly
/// better to call the non-const constructors in non-const contexts.
/// Truncates automatically.
    pub const fn const_create(s:&str) -> fstr<N> {
      let mut t = fstr::<N>::new();
      let mut len = s.len();
      if len>N { len = N; } // fix max length
      t.len = len;
      let bytes = s.as_bytes();
      let mut i = 0;
      while i<len {
        t.chrs[i] = bytes[i];
        i += 1;
      }
      t
    }//const_make

    /// version of `const_create` that does not truncate.
    pub const fn const_try_create(s:&str) -> Result<fstr<N>, &str> {
      if s.len()+1>N { Err(s) }
      else { Ok(fstr::const_create(s)) }
    }
    
    /// creates an empty string, equivalent to fstr::default() but can also be
    /// called from a const context
    #[inline]
    pub const fn new() -> fstr<N> {
        fstr {
          chrs:[0;N],
          len: 0,
        }
    }//new

    /// length of the string in bytes, which will be up to the maximum size N.
    /// This is a constant-time operation and can be called from a const
    /// context
    #[inline]
    pub const fn len(&self) -> usize {
        self.len
    }

    /// returns maximum capacity in bytes
    pub const fn capacity(&self) -> usize {
        N
    }

    /// converts fstr to an owned string
    pub fn to_string(&self) -> String {
        //self.to_str().to_owned()
        String::from(self.to_str())
        //self.chrs[0..self.len].iter().map(|x|{*x as char}).collect()
    }

    /// allows returns copy of u8 array underneath the fstr
    pub const fn as_u8(&self) -> [u8; N] {
        self.chrs
    }

    /// returns slice of the u8 array underneath
    pub fn as_bytes(&self) -> &[u8] {
        &self.chrs[0..self.len]
    }

    /// returns mutable slice of the u8 array underneath (use with care)
    pub fn as_bytes_mut(&mut self) -> &mut [u8] {
        let n = self.len;
        &mut self.chrs[0..n]
    }

    /// converts fstr to &str using [std::str::from_utf8_unchecked].  Since
    /// fstr can only be built from valid utf8 sources, this function
    /// is safe.
    pub fn to_str(&self) -> &str {
        unsafe { std::str::from_utf8_unchecked(&self.chrs[0..self.len]) }
    }
    /// same functionality as [fstr::to_str], but using [std::str::from_utf8]
    /// and may technically panic.
    pub fn as_str(&self) -> &str //{self.to_str()}
    {
        std::str::from_utf8(&self.chrs[0..self.len]).unwrap()
    }


    /// version of [fstr::as_str] that does not call `unwrap`
    pub fn as_str_safe(&self) -> Result<&str,core::str::Utf8Error> {
        core::str::from_utf8(&self.chrs[0..self.len])
    }
 

    /// changes a character at character position i to c.  This function
    /// requires that c is in the same character class (ascii or unicode)
    /// as the char being replaced.  It never shuffles the bytes underneath.
    /// The function returns true if the change was successful.
    pub fn set(&mut self, i: usize, c: char) -> bool {
        let ref mut cbuf = [0u8; 4]; // characters require at most 4 bytes
        c.encode_utf8(cbuf);
        let clen = c.len_utf8();
        if let Some((bi, rc)) = self.to_str().char_indices().nth(i) {
            if clen == rc.len_utf8() {
                self.chrs[bi..bi + clen].clone_from_slice(&cbuf[..clen]);
                //for k in 0..clen {self.chrs[bi+k] = cbuf[k];}
                return true;
            }
        }
        return false;
    }
    /// adds chars to end of current string up to maximum size N of `fstr<N>`,
    /// returns the portion of the push string that was NOT pushed due to
    /// capacity, so
    /// if "" is returned then all characters were pushed successfully.
    pub fn push<'t>(&mut self, s: &'t str) -> &'t str {
        self.push_str(s)
        /*
        if s.len() < 1 {
            return s;
        }
        let mut buf = [0u8; 4];
        let mut i = self.len();
        let mut sci = 0; // indexes characters in s
        for c in s.chars() {
            let clen = c.len_utf8();
            c.encode_utf8(&mut buf);
            if i+clen <= N {
                self.chrs[i..i + clen].clone_from_slice(&buf[..clen]);
                /*
                for k in 0..clen
                {
                  self.chrs[i+k] = buf[k];
                }
                */
                i += clen;
            } else {
                self.len = i;
                return &s[sci..];
            }
            sci += clen;
        }
        self.len = i;
        &s[sci..]
        */
    } //push

    /// alias for [fstr::push]
    pub fn push_str<'t>(&mut self, src: &'t str) -> &'t str {
        let srclen = src.len();
        let slen = self.len();
        let bytes = &src.as_bytes();
        let length = core::cmp::min(slen + srclen, N);
        let remain = if N >= (slen + srclen) {
            0
        } else {
            (srclen + slen) - N
        };
        let mut i = 0;
        while i < srclen && i + slen < N {
            self.chrs[slen + i] = bytes[i];
            i += 1;
        } //while
        self.len += i;
        &src[srclen - remain..]
    }

    /// pushes a single character to the end of the string, returning
    /// true on success.
    pub fn push_char(&mut self, c: char) -> bool {
        let clen = c.len_utf8();
        if self.len + clen > N {
            return false;
        }
        let mut buf = [0u8; 4]; // char buffer
        let bstr = c.encode_utf8(&mut buf);
        self.push(bstr);
        true
    } // push_char

    /// remove and return last character in string, if it exists
    pub fn pop_char(&mut self) -> Option<char> {
        if self.len() == 0 {
            return None;
        }
        let (ci, lastchar) = self.char_indices().last().unwrap();
        self.len = ci;
        Some(lastchar)
    } //pop

    /// returns the number of characters in the string regardless of
    /// character class
    pub fn charlen(&self) -> usize {
        self.to_str().chars().count()
    }

    /// returns the nth char of the fstr
    pub fn nth(&self, n: usize) -> Option<char> {
        self.to_str().chars().nth(n)
    }

    /// returns the nth byte of the string as a char.  This
    /// function should only be called, for example, on ascii strings.  It
    /// is designed to be quicker than [fstr::nth], and does not check array bounds or
    /// check n against the length of the string. Nor does it check
    /// if the value returned is a valid character.
    pub const fn nth_bytechar(&self, n: usize) -> char {
        self.chrs[n] as char
    }
    /// alias for [Self::nth_bytechar] (for backwards compatibility)
    pub const fn nth_ascii(&self, n: usize) -> char {
        self.chrs[n] as char
    }

    /// shortens the fstr in-place (mutates).  Note that n indicates
    /// a *character* position to truncate up to, not the byte position.
    //  If n is greater than the
    /// current length of the string in chars, this operation will have no effect.
    pub fn truncate(&mut self, n: usize) {
        if let Some((bi, c)) = self.to_str().char_indices().nth(n) {
            //self.chrs[bi] = 0;
            self.len = bi;
        }
        //if n<self.len {self.len = n;}
    }

    /// truncates string up to *byte* position n.  **Panics** if n is
    /// not on a character boundary, similar to [String::truncate]
    pub fn truncate_bytes(&mut self, n: usize) {
        if (n < self.len) {
            assert!(self.is_char_boundary(n));
            self.len = n
        }
    }

    /// Trims **in-place** trailing ascii whitespaces.  This function
    /// regards all bytes as single chars.  The operation panics if
    /// the resulting string does not end on a character boundary.
    pub fn right_ascii_trim(&mut self) {
        let mut n = self.len;
        while n > 0 && (self.chrs[n - 1] as char).is_ascii_whitespace() {
            //self.chrs[n-1] = 0;
            n -= 1;
        }
        assert!(self.is_char_boundary(n));
        self.len = n;
    } //right_trim

    /// resets string to empty string
    pub fn clear(&mut self) {
        self.len = 0;
    }

    /// in-place modification of ascii characters to lower-case, panics if
    /// the string is not ascii.
    pub fn make_ascii_lowercase(&mut self) {
        assert!(self.is_ascii());
        for b in &mut self.chrs[..self.len] {
            if *b >= 65 && *b <= 90 {
                *b |= 32;
            }
        }
    } //make_ascii_lowercase

    /// in-place modification of ascii characters to upper-case, panics if
    /// the string is not ascii.
    pub fn make_ascii_uppercase(&mut self) {
        assert!(self.is_ascii());
        for b in &mut self.chrs[..self.len] {
            if *b >= 97 && *b <= 122 {
                *b -= 32;
            }
        }
    }

    /// Constructs a clone of this fstr but with only upper-case ascii
    /// characters.  This contrasts with [str::to_ascii_uppercase],
    /// which creates an owned String.
    pub fn to_ascii_upper(&self) -> Self {
        let mut cp = self.clone();
        cp.make_ascii_uppercase();
        cp
    }

    /// Constructs a clone of this fstr but with only lower-case ascii
    /// characters.  This contrasts with [str::to_ascii_lowercase],
    /// which creates an owned String.
    pub fn to_ascii_lower(&self) -> Self {
        let mut cp = *self;
        cp.make_ascii_lowercase();
        cp
    }

    /// Tests for ascii case-insensitive equality with another string.
    /// This function does not check if either string is ascii.
    pub fn case_insensitive_eq<TA>(&self, other: TA) -> bool
    where
        TA: AsRef<str>,
    {
        if self.len() != other.as_ref().len() {
            return false;
        }
        let obytes = other.as_ref().as_bytes();
        for i in 0..self.len() {
            let mut c = self.chrs[i];
            if (c > 64 && c < 91) {
                c = c | 32;
            } // make lowercase
            let mut d = obytes[i];
            if (d > 64 && d < 91) {
                d = d | 32;
            } // make lowercase
            if c != d {
                return false;
            }
        } //for
        true
    } //case_insensitive_eq

    /// Decodes a UTF-16 encodeded slice. If a decoding error is encountered
    /// or capacity exceeded, an `Err(s)` is returned where s is the
    /// the encoded string up to the point of the error.
    pub fn from_utf16(v: &[u16]) -> Result<Self, Self> {
        let mut s = Self::new();
        for c in char::decode_utf16(v.iter().cloned()) {
            if let Ok(c1) = c {
                if !s.push_char(c1) {
                    return Err(s);
                }
            } else {
                return Err(s);
            }
        }
        Ok(s)
    } //from_utf16
} //impl fstr<N>

impl<const N: usize> std::ops::Deref for fstr<N> {
    type Target = str;
    fn deref(&self) -> &Self::Target {
        self.to_str()
    }
}

impl<T: AsRef<str> + ?Sized, const N: usize> std::convert::From<&T> for fstr<N> {
    fn from(s: &T) -> fstr<N> {
        fstr::make(s.as_ref())
    }
}
impl<T: AsMut<str> + ?Sized, const N: usize> std::convert::From<&mut T> for fstr<N> {
    fn from(s: &mut T) -> fstr<N> {
        fstr::make(s.as_mut())
    }
}

/*
//generic, but "conflicts with crate 'core'
impl<const N: usize, TA:AsRef<str>> std::convert::From<TA> for fstr<N> {
    fn from(s: TA) -> fstr<N> {
        fstr::<N>::make(s.as_ref())
    }
}
*/

impl<const N: usize> std::convert::From<String> for fstr<N> {
    fn from(s: String) -> fstr<N> {
        fstr::<N>::make(&s[..])
    }
}

impl<const N: usize, const M: usize> std::convert::From<zstr<M>> for fstr<N> {
    fn from(s: zstr<M>) -> fstr<N> {
        fstr::<N>::make(&s.to_str())
    }
}

impl<const N: usize, const M: usize> std::convert::From<tstr<M>> for fstr<N> {
    fn from(s: tstr<M>) -> fstr<N> {
        fstr::<N>::make(&s.to_str())
    }
}

impl<const N: usize> std::cmp::PartialOrd for fstr<N> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<const N: usize> std::cmp::Ord for fstr<N> {
    fn cmp(&self, other: &Self) -> Ordering {
        self.chrs[0..self.len].cmp(&other.chrs[0..other.len])
    }
}

impl<const M: usize> fstr<M> {
    /// converts an fstr\<M\> to an fstr\<N\>. If the length of the string being
    /// converted is greater than N, the extra characters are ignored.
    /// This operation produces a copy (non-destructive).
    /// Example:
    ///```ignore
    ///  let s1:fstr<8> = fstr::from("abcdefg");
    ///  let s2:fstr<16> = s1.resize();
    ///```
    pub fn resize<const N: usize>(&self) -> fstr<N> {
        //if (self.len()>N) {eprintln!("!Fixedstr Warning in fstr::resize: string \"{}\" truncated while resizing to fstr<{}>",self,N);}
        let length = if (self.len < N) { self.len } else { N };
        let mut chars = [0u8; N];
        chars[..length].clone_from_slice(&self.chrs[..length]);
        //for i in 0..length {chars[i] = self.chrs[i];}
        fstr {
            chrs: chars,
            len: length,
        }
    } //resize

    /// version of resize that does not allow string truncation due to length
    pub fn reallocate<const N: usize>(&self) -> Option<fstr<N>> {
        if self.len() <= N {
            Some(self.resize())
        } else {
            None
        }
    }
} //impl fstr<M>

impl<const N: usize> std::convert::AsRef<str> for fstr<N> {
    fn as_ref(&self) -> &str {
        self.to_str()
    }
}
impl<const N: usize> std::convert::AsMut<str> for fstr<N> {
    fn as_mut(&mut self) -> &mut str {
        unsafe { std::str::from_utf8_unchecked_mut(&mut self.chrs[0..self.len]) }
    }
}

impl<const N: usize> std::fmt::Display for fstr<N> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        //write!(f, "{}", self.to_str())
        f.pad(self.to_str())
    }
}

impl<const N: usize> PartialEq<&str> for fstr<N> {
    fn eq(&self, other: &&str) -> bool {
        &self.to_str() == other // see below
    } //eq
}

impl<const N: usize> PartialEq<&str> for &fstr<N> {
    fn eq(&self, other: &&str) -> bool {
        &self.to_str() == other
    } //eq
}
impl<'t, const N: usize> PartialEq<fstr<N>> for &'t str {
    fn eq(&self, other: &fstr<N>) -> bool {
        &other.to_str() == self
    }
}
impl<'t, const N: usize> PartialEq<&fstr<N>> for &'t str {
    fn eq(&self, other: &&fstr<N>) -> bool {
        &other.to_str() == self
    }
}

/// defaults to empty string
impl<const N: usize> Default for fstr<N> {
    fn default() -> Self {
        fstr::<N>::make("")
    }
}

impl<const N: usize> std::fmt::Debug for fstr<N> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.pad(&self.to_str())
    }
} // Debug impl

impl<const N: usize> fstr<N> {
    /// returns a copy of the portion of the string, string could be truncated
    /// if indices are out of range. Similar to slice [start..end]
    pub fn substr(&self, start: usize, end: usize) -> fstr<N> {
        let mut chars = [0u8; N];
        let mut inds = self.char_indices();
        let len = self.len();
        if start >= len || end <= start {
            return fstr {
                chrs: chars,
                len: 0,
            };
        }
        let (si, _) = inds.nth(start).unwrap();
        let last = if (end >= len) {
            len
        } else {
            match inds.nth(end - start - 1) {
                Some((ei, _)) => ei,
                None => len,
            } //match
        }; //let last =...

        chars[0..last - si].clone_from_slice(&self.chrs[si..last]);
        /*
        for i in si..last
        {
          chars[i-si] = self.chrs[i];
        }
        */
        fstr {
            chrs: chars,
            len: end - start,
        }
    } //substr
}

////////////// core::fmt::Write trait
/// Usage:
/// ```
///   use fixedstr::*;
///   use std::fmt::Write;
///   let mut s = fstr::<32>::new();
///   let result = write!(&mut s,"hello {}, {}, {}",1,2,3);
///   /* or */
///   let s2 = str_format!(fstr<24>,"hello {}, {}, {}",1,2,3);
///   let s3 = try_format!(fstr::<4>,"hello {}, {}, {}",1,2,3); // returns None
/// ```
impl<const N: usize> core::fmt::Write for fstr<N> {
    fn write_str(&mut self, s: &str) -> std::fmt::Result //Result<(),std::fmt::Error>
    {
        let rest = self.push(s);
        if rest.len() > 0 {
            return Err(core::fmt::Error::default());
        }
        Ok(())
    } //write_str
} //core::fmt::Write trait

impl<const N: usize, TA: AsRef<str>> Add<TA> for fstr<N> {
    type Output = fstr<N>;
    fn add(self, other: TA) -> fstr<N> {
        let mut a2 = self;
        a2.push(other.as_ref());
        a2
    }
} //Add &str

impl<const N: usize> Add<&fstr<N>> for &str {
    type Output = fstr<N>;
    fn add(self, other: &fstr<N>) -> fstr<N> {
        let mut a2 = fstr::from(self);
        a2.push(other);
        a2
    }
} //Add &str on left

impl<const N: usize> Add<fstr<N>> for &str {
    type Output = fstr<N>;
    fn add(self, other: fstr<N>) -> fstr<N> {
        let mut a2 = fstr::from(self);
        a2.push(&other);
        a2
    }
} //Add &str on left

impl<const N: usize> core::hash::Hash for fstr<N> {
    fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
        self.as_ref().hash(state);
    }
} //hash
  /*  can't adopt because it affects type inference for .resize()
  impl<const N: usize, const M:usize> PartialEq<fstr<M>> for fstr<N> {
      fn eq(&self, other: &fstr<M>) -> bool {
         self.as_ref() == other.as_ref()
      }
  }
  */
impl<const N: usize> PartialEq for fstr<N> {
    fn eq(&self, other: &Self) -> bool {
        self.as_ref() == other.as_ref()
    }
}

impl<const N: usize> core::str::FromStr for fstr<N> {
    type Err = &'static str;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if s.len() <= N {
            Ok(fstr::from(s))
        } else {
            Err("capacity exceeded")
        }
    }
}