1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
//! This module implements **[Flexstr]**, which uses an internal enum
//! to hold either a fixed string of up to a maximum length, or an owned [String].
//! The structure satisfies the following axiom:
//! > *For N <= 256, a `Flexstr<N>` is represented internally by an
//! owned String if and only if the length of the string is greater than
//! or equal to N*.
//!
//! For example, a `Flexstr<16>` will hold a string of up to 15 bytes
//! in an u8-array of size 16. The first byte of the array holds the length of
//! the string. If subsequent operations such as [Flexstr::push_str]
//! extends the string past 15 bytes, the representation will switch to an owned
//! String. Conversely, an operation such as [Flexstr::truncate]
//! may switch the representation back to a fixed string.
//! The default N is 32. **The largest N for which the axiom holds
//! is 256.** For all N>256, the internal representation is always an owned
//! string.
//!
//! Example:
//! ```
//! let mut s:Flexstr<8> = Flexstr::from("abcdef");
//! assert!(s.is_fixed());
//! s.push_str("ghijk");
//! assert!(s.is_owned());
//! s.truncate(7);
//! assert!(s.is_fixed());
//! ```
//!
//! The intended use of this datatype is for
//! situations when the lengths of strings are *usually* less than N, with
//! only occasional exceptions that require a different representation.
//! However, unlike the other string types in this crate, a Flexstr cannot
//! be copied and is thus subject to move semantics. The serde serialization
//! option is also supported (`features serde`).
#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused_parens)]
#![allow(unused_assignments)]
#![allow(unused_mut)]
#![allow(unused_imports)]
#![allow(dead_code)]
use crate::fstr;
use crate::zstr;
use crate::tstr;
use crate::{str12, str128, str16, str192, str24, str256, str32, str4, str48, str64, str8, str96};
use std::cmp::{min, Ordering};
use std::ops::Add;
use crate::flexible_string::Strunion::*;
/*
#[derive(Copy,Clone, Eq, PartialEq, Hash)]
enum Strunion_fixed
{
single(tstr<8>),
double(tstr<16>),
quad(tstr<32>),
octo(tstr<64>),
hexa(tstr<128>),
}
impl Default for Strunion_fixed {
fn default() -> Self {
Strunion_fixed::single(tstr::<8>::default())
}
}
*/
#[derive(Eq, PartialEq, Hash)]
enum Strunion<const N:usize>
{
fixed(tstr<N>),
owned(String),
}//Strunion
impl<const N:usize> Clone for Strunion<N> {
fn clone(&self) -> Self {
match &self {
fixed(s) => fixed(*s),
owned(s) => owned(s.clone()),
}//match
}
}//impl Clone
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct Flexstr<const N:usize=32>
{
inner:Strunion<N>,
}
impl<const N:usize> Flexstr<N>
{
/// Creates a new `Flexstr<N>` with given &str. If the length of the &str
/// is less than N and N<=256, the internal representation is an `[u8;N]`
/// array with the first byte holding the length of the string. Otherwise,
/// the internal representation is an owned String.
///
/// The Flexstr type satisfies the following axiom:
/// > *For N <= 256, a `Flexstr<N>` is represented internally by an
/// owned String if and only if the length of the string is greater
/// than or equal to N*.
pub fn make(s:&str) -> Self
{
if s.len()<N && N<=256 {Flexstr{inner:fixed(tstr::<N>::from(s))}}
else {Flexstr{inner:owned(String::from(s))}}
}//make
#[cfg(feature="serde")]
/// this function is only added for uniformity in serde implementation
pub fn try_make(s: &str) -> Result<Flexstr<N>, &str> {
Ok(Flexstr::make(s))
}
/// length of the string in bytes. This is a constant-time operation.
pub fn len(&self) -> usize
{
match &self.inner {
fixed(s) => s.len(),
owned(s) => s.len(),
}//match
}//len
/// creates an empty string, equivalent to [Flexstr::default]
pub fn new() -> Self { Self::default() }
/// length in number of characters as opposed to bytes: this is
/// not necessarily a constant time operation.
pub fn charlen(&self) -> usize {
match &self.inner {
fixed(s) => s.charlen(),
owned(s) => {
let v: Vec<_> = s.chars().collect();
v.len()
},
}//match
}//charlen
/// converts fstr to &str, possibly using using [std::str::from_utf8_unchecked]. Since
/// Flexstr can only be built from valid utf8 sources, this function
/// is safe.
pub fn to_str(&self) -> &str
{
match &self.inner {
fixed(s) => s.to_str(),
owned(s) => &s[..],
}//match
}//to_str
/// same functionality as [Flexstr::to_str], but only uses
///[std::str::from_utf8] and may technically panic.
pub fn as_str(&self) -> &str //{self.to_str()}
{
match &self.inner {
fixed(s) => s.as_str(),
owned(s) => &s[..],
}//match
}
/// retrieves a copy of the underlying fixed string, if it is a fixed string.
/// Note that since the `tstr` type is not exported, this function should
/// be used in conjunction with one of the public aliases [str4]-[str256].
/// For example,
/// ```
/// let s = Flexstr::<8>::from("abcd");
/// let t:str8 = s.get_str().unwrap();
/// ```
pub fn get_str(&self) -> Option<tstr<N>> {
if let fixed(s) = &self.inner { Some(*s) }
else {None}
}//get_str
/// if the underlying representation of the string is an owned string,
/// return the owned string, leaving an empty string in its place.
pub fn take_string(&mut self) -> Option<String>
{
if let owned(s) = &mut self.inner {
let mut temp = fixed(tstr::new());
std::mem::swap(&mut self.inner, &mut temp);
if let owned(t) = temp {Some(t)} else {None}
}
else {None}
}//take_owned
/// this function consumes the Flexstr and returns an owned string
pub fn to_string(self) -> String
{
match self.inner {
fixed(s) => s.to_string(),
owned(s) => s,
}//match
}//to_string
/// returns the nth char of the string, if it exists
pub fn nth(&self, n: usize) -> Option<char> {
self.to_str().chars().nth(n)
}
/// returns the nth byte of the string as a char. This function
/// is designed to be quicker than [Flexstr::nth] and does not check
/// for bounds.
pub fn nth_ascii(&self, n:usize) -> char {
match &self.inner {
fixed(s) => s.nth_ascii(n),
owned(s) => s.as_bytes()[n] as char,
}
}//nth_ascii
/// returns a u8-slice that represents the underlying string. The first
/// byte of the slice is **not** the length of the string regarless of
/// the internal representation.
pub fn as_bytes(&self) -> &[u8] {
match &self.inner {
fixed(f) => f.as_bytes(),
owned(s) => s.as_bytes(),
}//match
}
/// changes a character at character position i to c. This function
/// requires that c is in the same character class (ascii or unicode)
/// as the char being replaced. It never shuffles the bytes underneath.
/// The function returns true if the change was successful.
pub fn set(&mut self, i: usize, c: char) -> bool {
match &mut self.inner {
fixed(s) => s.set(i,c),
owned(s) => unsafe {
let ref mut cbuf = [0u8; 4];
c.encode_utf8(cbuf);
let clen = c.len_utf8();
if let Some((bi, rc)) = s.char_indices().nth(i) {
if clen == rc.len_utf8() {
s.as_bytes_mut()[bi..bi+clen].copy_from_slice(&cbuf[..clen]);
//self.chrs[bi + 1..bi + clen + 1].copy_from_slice(&cbuf[..clen]);
//for k in 0..clen {self.chrs[bi+k+1] = cbuf[k];}
return true;
}
}
return false;
},
}//match
} //set
/// returns whether the internal representation is a fixed string (tstr)
pub fn is_fixed(&self) -> bool {
match &self.inner {
fixed(_) => true,
owned(_) => false,
}
}//is_fixed
/// returns whether the internal representation is an owned String
pub fn is_owned(&self) -> bool { !self.is_fixed() }
/// applies the destructive closure only if the internal representation
/// is a fixed string
pub fn if_fixed<F>(&mut self, f:F) where F:FnOnce(&mut tstr<N>)
{
if let fixed(s) = &mut self.inner {f(s);}
}
/// applies the destructive closure only if the internal representation
/// is a fixed string
pub fn if_owned<F>(&mut self, f:F) where F:FnOnce(&mut str)
{
if let owned(s) = &mut self.inner {f(s);}
}
/// applies closure f if the internal representation is a fixed string,
/// or closure g if the internal representation is an owned string.
pub fn map_or<F,G,U>(&self, f:F, g:G) -> U
where F:FnOnce(&tstr<N>)-> U, G:FnOnce(&str) -> U
{
match &self.inner {
fixed(s) => f(s),
owned(s) => g(&s[..]),
}//match
}//map
/// version of [Flexstr::map_or] accepting FnMut closures
pub fn map_or_mut<F,G,U>(&mut self, f:&mut F, g:&mut G) -> U
where F:FnMut(&mut tstr<N>)-> U, G:FnMut(&mut str) -> U
{
match &mut self.inner {
fixed(s) => f(s),
owned(s) => g(&mut s[..]),
}//match
}//map
/// This function will append the Flexstr with the given slice,
/// switching to the owned-String representation if necessary. The function
/// returns true if the resulting string uses a `tstr<N>` type, and
/// false if the representation is an owned string.
pub fn push_str(&mut self, s:&str) -> bool {
match &mut self.inner {
fixed(fs) if fs.len()+s.len() < N => { fs.push(s); true},
fixed(fs) => {
let fss = fs.to_string() + s;
self.inner = owned(fss);
false
},
owned(ns) => {ns.push_str(s); false},
}//match
}//push
/// appends string with a single character, switching to the String
/// representation if necessary. Returns true if resulting string
/// remains fixed.
pub fn push(&mut self, c:char) -> bool {
let clen = c.len_utf8();
match &mut self.inner {
owned(s) => { s.push(c); false},
fixed(s) if s.len()+clen>=N => {
let mut fss = s.to_string(); fss.push(c);
self.inner = owned(fss);
false
},
fixed(s) => {
let mut buf = [0u8;4];
let bstr = c.encode_utf8(&mut buf);
s.push(bstr);
true
}
}//match
}//push
/// this function truncates a string at the indicated byte position,
/// returning true if the truncated string is fixed, and false if owned.
/// The operation has no effect if n is larger than the length of the
/// string. The operation will **panic** if n is not on a character
/// boundary, similar to [String::truncate].
pub fn truncate(&mut self, n: usize) -> bool {
match &mut self.inner {
fixed(fs) if n<fs.len() => { fs.truncate_bytes(n); true },
fixed(_) => {true},
owned(s) if n<N => {
assert!(s.is_char_boundary(n));
self.inner = fixed(tstr::<N>::from(&s[..n]));
true
},
owned(s) => { if n<s.len() {s.truncate(n);} false},
}//match
}//truncate
/// resets string to empty
pub fn clear(&mut self) {
match &mut self.inner {
fixed(s) => {s.clear();},
owned(s) => { self.inner = fixed(tstr::default());},
}
}//clear
/// returns string corresponding to slice indices as a copy or clone.
pub fn substr(&self, start: usize, end: usize) -> Flexstr<N> {
match &self.inner {
fixed(s) => Flexstr{inner:fixed(s.substr(start,end))},
owned(s) => Self::from(&s[start..end]),
}
}//substr
/// Splits the string into a `tstr<N>` portion and a String portion.
/// The structure inherits the fixed part and the String returned will
/// contain the extra bytes that does not fit. Example:
///
/// ```
/// let mut fs:Flexstr<4> = Flexstr::from("abcdefg");
/// let extras = fs.split_off();
/// assert!( &fs=="abc" && &extras=="defg" && fs.is_fixed());
/// ```
pub fn split_off(&mut self) -> String {
match &mut self.inner {
fixed(s) => { String::default() },
owned(s) => {
let answer = String::from(&s[N-1..]);
self.inner = fixed( tstr::<N>::from(&s[..N-1]) );
answer
}
}//match
}//split_off
} //impl<N>
impl<const N:usize> Default for Flexstr<N> {
fn default() -> Self { Flexstr {inner:fixed(tstr::<N>::default())} }
}
impl<const N:usize> std::ops::Deref for Flexstr<N>
{
type Target = str;
fn deref(&self) -> &Self::Target {
self.to_str()
}
}
impl<T: AsRef<str> + ?Sized, const N: usize> std::convert::From<&T> for Flexstr<N> {
fn from(s: &T) -> Self {
Self::make(s.as_ref())
}
}
impl<T: AsMut<str> + ?Sized, const N: usize> std::convert::From<&mut T> for Flexstr<N> {
fn from(s: &mut T) -> Self {
Self::make(s.as_mut())
}
}
impl<const N: usize> std::cmp::PartialOrd for Flexstr<N> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
//Some(self.chrs[0..self.len].cmp(other.chrs[0..other.len]))
Some(self.cmp(other))
}
}
impl<const N: usize> std::cmp::Ord for Flexstr<N> {
fn cmp(&self, other: &Self) -> Ordering {
self.to_str().cmp(other.to_str())
}
}
impl<const N: usize> std::convert::AsRef<str> for Flexstr<N> {
fn as_ref(&self) -> &str {
self.to_str()
}
}
impl<const N: usize> std::convert::AsMut<str> for Flexstr<N> {
fn as_mut(&mut self) -> &mut str {
match &mut self.inner {
fixed(f) => f.as_mut(),
owned(s) => s.as_mut(),
}//match
}
}
impl<const N: usize> PartialEq<&str> for Flexstr<N> {
fn eq(&self, other: &&str) -> bool {
&self.to_str() == other // see below
} //eq
}
impl<const N: usize> PartialEq<&str> for &Flexstr<N> {
fn eq(&self, other: &&str) -> bool {
&self.to_str() == other
} //eq
}
impl<'t, const N: usize> PartialEq<Flexstr<N>> for &'t str {
fn eq(&self, other: &Flexstr<N>) -> bool {
&other.to_str() == self
}
}
impl<'t, const N: usize> PartialEq<&Flexstr<N>> for &'t str {
fn eq(&self, other: &&Flexstr<N>) -> bool {
&other.to_str() == self
}
}
impl<const N: usize> std::fmt::Debug for Flexstr<N> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.pad(&self.to_str())
}
} // Debug impl
impl<const N: usize> std::fmt::Display for Flexstr<N> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.to_str())
}
}
impl<const N: usize> std::fmt::Write for Flexstr<N> {
fn write_str(&mut self, s: &str) -> std::fmt::Result
{
self.push_str(s);
Ok(())
} //write_str
} //std::fmt::Write trait
impl<const N: usize> std::convert::From<String> for Flexstr<N> {
/// *will consume owned string and convert it to a fixed
/// representation if its length is less than N*
fn from(s: String) -> Self {
if s.len()>=N {
Flexstr{inner:owned(s)}
} else {
Flexstr{inner:fixed(tstr::<N>::from(&s[..]))}
}
}
}//from String
impl<const M: usize> Flexstr<M> {
/// returns a copy/clone of the string with new fixed capacity N.
/// Example:
/// ```
/// let a:Flexstr<4> = Flexstr::from("ab");
/// let mut b:Flexstr<8> = a.resize();
/// b.push_str("cdef");
/// assert!(b.is_fixed());
/// a.push_str("1234");
/// assert!(a.is_owned());
/// ```
pub fn resize<const N: usize>(&self) -> Flexstr<N> {
Flexstr::from(self)
}
}