fixed_decimal 0.2.2

An API for representing numbers in a human-readable form
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use smallvec::SmallVec;

use core::cmp;
use core::cmp::Ordering;
use core::fmt;
use core::ops::RangeInclusive;

use core::str::FromStr;

use static_assertions::const_assert;

use crate::signum::Signum;
use crate::uint_iterator::IntIterator;

use crate::Error;

// FixedDecimal assumes usize (digits.len()) is at least as big as a u16
const_assert!(core::mem::size_of::<usize>() >= core::mem::size_of::<u16>());

/// A struct containing decimal digits with efficient iteration and manipulation by magnitude
/// (power of 10). Supports a mantissa of non-zero digits and a number of leading and trailing
/// zeros, used for formatting and plural selection.
///
/// # Data Types
///
/// The following types can be converted to a `FixedDecimal`:
///
/// - Integers, signed and unsigned
/// - Strings representing an arbitrary-precision decimal
///
/// To create a [`FixedDecimal`] with fraction digits, either create it from an integer and then
/// call [`FixedDecimal::multiplied_pow10`], or create it from a string.
///
/// Floating point numbers will be supported pending a resolution to
/// [#166](https://github.com/unicode-org/icu4x/issues/166). In the mean time, a third-party
/// float-to-string library may be used.
///
/// # Examples
///
/// ```
/// use fixed_decimal::FixedDecimal;
///
/// let mut dec = FixedDecimal::from(250);
/// assert_eq!("250", dec.to_string());
///
/// dec.multiply_pow10(-2);
/// assert_eq!("2.50", dec.to_string());
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct FixedDecimal {
    /// List of digits; digits\[0\] is the most significant.
    ///
    /// Invariants:
    /// - Must not include leading or trailing zeros
    /// - Length must not exceed (magnitude - lower_magnitude + 1)
    // TODO: Consider using a nibble array
    digits: SmallVec<[u8; 8]>,

    /// Power of 10 of digits\[0\].
    ///
    /// Invariants:
    /// - <= upper_magnitude
    /// - >= lower_magnitude
    magnitude: i16,

    /// Power of 10 of the most significant digit, which may be zero.
    ///
    /// Invariants:
    /// - >= 0
    /// - >= magnitude
    upper_magnitude: i16,

    /// Power of 10 of the least significant digit, which may be zero.
    ///
    /// Invariants:
    /// - <= 0
    /// - <= magnitude
    lower_magnitude: i16,

    /// Whether the number is negative. Negative zero is supported.
    is_negative: bool,
}

impl Default for FixedDecimal {
    /// Returns a `FixedDecimal` representing zero.
    fn default() -> Self {
        Self {
            digits: SmallVec::new(),
            magnitude: 0,
            upper_magnitude: 0,
            lower_magnitude: 0,
            is_negative: false,
        }
    }
}

macro_rules! impl_from_signed_integer_type {
    ($itype:ident, $utype: ident) => {
        impl From<$itype> for FixedDecimal {
            fn from(value: $itype) -> Self {
                let int_iterator: IntIterator<$utype> = value.into();
                let is_negative = int_iterator.is_negative;
                let mut result = Self::from_ascending(int_iterator)
                    .expect("All built-in integer types should fit");
                result.is_negative = is_negative;
                result
            }
        }
    };
}

macro_rules! impl_from_unsigned_integer_type {
    ($utype: ident) => {
        impl From<$utype> for FixedDecimal {
            fn from(value: $utype) -> Self {
                let int_iterator: IntIterator<$utype> = value.into();
                Self::from_ascending(int_iterator).expect("All built-in integer types should fit")
            }
        }
    };
}

impl_from_signed_integer_type!(isize, usize);
impl_from_signed_integer_type!(i128, u128);
impl_from_signed_integer_type!(i64, u64);
impl_from_signed_integer_type!(i32, u32);
impl_from_signed_integer_type!(i16, u16);
impl_from_signed_integer_type!(i8, u8);

impl_from_unsigned_integer_type!(usize);
impl_from_unsigned_integer_type!(u128);
impl_from_unsigned_integer_type!(u64);
impl_from_unsigned_integer_type!(u32);
impl_from_unsigned_integer_type!(u16);
impl_from_unsigned_integer_type!(u8);

impl FixedDecimal {
    /// Initialize a `FixedDecimal` with an iterator of digits in ascending
    /// order of magnitude, starting with the digit at magnitude 0.
    ///
    /// This method is not public; use `TryFrom::<isize>` instead.
    fn from_ascending<T>(digits_iter: T) -> Result<Self, Error>
    where
        T: Iterator<Item = u8>,
    {
        // TODO: make X a usize generic to customize the size of this array
        // https://github.com/rust-lang/rust/issues/44580
        // NOTE: 39 is the size required for u128: ceil(log10(u128::MAX)) == 39.
        const X: usize = 39;
        // A temporary structure to allow the digits in the iterator to be reversed.
        // The digits are inserted started from the end, and then a slice is copied
        // into its final destination (result.digits).
        let mut mem: [u8; X] = [0u8; X];
        let mut trailing_zeros: usize = 0;
        let mut i: usize = 0;
        for (x, d) in digits_iter.enumerate() {
            // Take only up to core::i16::MAX values so that we have enough capacity
            if x > core::i16::MAX as usize {
                return Err(Error::Limit);
            }
            // TODO: Should we check here that `d` is between 0 and 9?
            // That should always be the case if IntIterator is used.
            if i != 0 || d != 0 {
                i += 1;
                match X.checked_sub(i) {
                    Some(v) => mem[v] = d,
                    // This error should be obsolete after X is made generic
                    None => return Err(Error::Limit),
                }
            } else {
                trailing_zeros += 1;
            }
        }
        let mut result: Self = Default::default();
        if i != 0 {
            let magnitude = trailing_zeros + i - 1;
            debug_assert!(magnitude <= core::i16::MAX as usize);
            result.magnitude = magnitude as i16;
            result.upper_magnitude = result.magnitude;
            debug_assert!(i <= X);
            result.digits.extend_from_slice(&mem[(X - i)..]);
        }
        #[cfg(debug_assertions)]
        result.check_invariants();
        Ok(result)
    }

    /// Gets the digit at the specified order of magnitude. Returns 0 if the magnitude is out of
    /// range of the currently visible digits.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// let dec = FixedDecimal::from(945);
    /// assert_eq!(0, dec.digit_at(-1));
    /// assert_eq!(5, dec.digit_at(0));
    /// assert_eq!(4, dec.digit_at(1));
    /// assert_eq!(9, dec.digit_at(2));
    /// assert_eq!(0, dec.digit_at(3));
    /// ```
    pub fn digit_at(&self, magnitude: i16) -> u8 {
        if magnitude > self.magnitude {
            0 // Leading zero
        } else {
            // The following line can't fail: magnitude <= self.magnitude, by
            // the if statement above, and u16::MAX == i16::MAX - i16::MIN, and
            // usize is asserted to be at least as big as u16.
            let j = (self.magnitude as i32 - magnitude as i32) as usize;
            match self.digits.get(j) {
                Some(v) => *v,
                None => 0, // Trailing zero
            }
        }
    }

    /// Gets the visible range of digit magnitudes, in ascending order of magnitude. Call `.rev()`
    /// on the return value to get the range in descending order. Magnitude 0 is always included,
    /// even if the number has leading or trailing zeros.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// let mut dec = FixedDecimal::from(120);
    /// assert_eq!(0..=2, dec.magnitude_range());
    /// ```
    pub const fn magnitude_range(&self) -> RangeInclusive<i16> {
        self.lower_magnitude..=self.upper_magnitude
    }

    /// Shift the digits by a power of 10, modifying self.
    ///
    /// Leading or trailing zeros may be added to keep the digit at magnitude 0 (the last digit
    /// before the decimal separator) visible.
    ///
    /// Can fail if the change in magnitude pushes the digits out of bounds; the magnitudes of all
    /// digits should fit in an i16.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// let mut dec = FixedDecimal::from(42);
    /// assert_eq!("42", dec.to_string());
    ///
    /// dec.multiply_pow10(3).expect("Bounds are small");
    /// assert_eq!("42000", dec.to_string());
    /// ```
    pub fn multiply_pow10(&mut self, delta: i16) -> Result<(), Error> {
        match delta.cmp(&0) {
            Ordering::Greater => {
                self.upper_magnitude = self
                    .upper_magnitude
                    .checked_add(delta)
                    .ok_or(Error::Limit)?;
                // If we get here, then the magnitude change is in-bounds.
                let lower_magnitude = self.lower_magnitude + delta;
                self.lower_magnitude = cmp::min(0, lower_magnitude);
            }
            Ordering::Less => {
                self.lower_magnitude = self
                    .lower_magnitude
                    .checked_add(delta)
                    .ok_or(Error::Limit)?;
                // If we get here, then the magnitude change is in-bounds.
                let upper_magnitude = self.upper_magnitude + delta;
                self.upper_magnitude = cmp::max(0, upper_magnitude);
            }
            Ordering::Equal => {}
        };
        self.magnitude += delta;
        #[cfg(debug_assertions)]
        self.check_invariants();
        Ok(())
    }

    /// Shift the digits by a power of 10, consuming self and returning a new object if successful.
    ///
    /// Leading or trailing zeros may be added to keep the digit at magnitude 0 (the last digit
    /// before the decimal separator) visible.
    ///
    /// Can fail if the change in magnitude pushes the digits out of bounds; the magnitudes of all
    /// digits should fit in an i16.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// let dec = FixedDecimal::from(42).multiplied_pow10(3).expect("Bounds are small");
    /// assert_eq!("42000", dec.to_string());
    /// ```
    pub fn multiplied_pow10(mut self, delta: i16) -> Result<Self, Error> {
        match self.multiply_pow10(delta) {
            Ok(()) => Ok(self),
            Err(err) => Err(err),
        }
    }

    /// Change the value from negative to positive or from positive to negative, modifying self.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// let mut dec = FixedDecimal::from(42);
    /// assert_eq!("42", dec.to_string());
    ///
    /// dec.negate();
    /// assert_eq!("-42", dec.to_string());
    ///
    /// dec.negate();
    /// assert_eq!("42", dec.to_string());
    /// ```
    pub fn negate(&mut self) {
        self.is_negative = !self.is_negative;
    }

    /// Change the value from negative to positive or from positive to negative, consuming self
    /// and returning a new object.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// assert_eq!(FixedDecimal::from(-42), FixedDecimal::from(42).negated());
    /// ```
    pub fn negated(mut self) -> Self {
        self.negate();
        self
    }

    /// Zero-pad the number on the left to a particular number of integer digits,
    /// returning the result.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// let mut dec = FixedDecimal::from(42);
    /// assert_eq!("42", dec.to_string());
    ///
    /// ;
    /// assert_eq!("0042", dec.clone().padded_left(4).to_string());
    ///
    /// assert_eq!("042", dec.clone().padded_left(3).to_string());
    ///
    /// assert_eq!("42", dec.clone().padded_left(2).to_string());
    ///
    /// assert_eq!("42", dec.clone().padded_left(1).to_string());
    /// ```
    pub fn padded_left(mut self, digits: u16) -> Self {
        self.pad_left(digits);
        self
    }

    /// Zero-pad the number on the left to a particular number of integer digits.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// let mut dec = FixedDecimal::from(42);
    /// assert_eq!("42", dec.to_string());
    ///
    /// dec.pad_left(4);
    /// assert_eq!("0042", dec.to_string());
    ///
    /// dec.pad_left(3);
    /// assert_eq!("042", dec.to_string());
    ///
    /// dec.pad_left(2);
    /// assert_eq!("42", dec.to_string());
    ///
    /// dec.pad_left(1);
    /// assert_eq!("42", dec.to_string());
    /// ```
    pub fn pad_left(&mut self, digits: u16) {
        let mut magnitude = if digits == 0 {
            0
        } else if digits > (i16::MAX as u16) + 1 {
            i16::MAX
        } else {
            (digits - 1) as i16
        };
        if magnitude < 0 {
            magnitude = 0;
        }
        // Do not truncate nonzero digits
        if magnitude <= self.magnitude {
            magnitude = self.magnitude;
        }

        self.upper_magnitude = magnitude;
    }

    /// Truncate the number on the left to a particular magnitude, deleting
    /// digits if necessary, returning the result.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// let mut dec = FixedDecimal::from(4235);
    /// assert_eq!("4235", dec.to_string());
    ///
    /// assert_eq!("4235", dec.clone().truncated_left(5).to_string());
    ///
    /// assert_eq!("235", dec.clone().truncated_left(2).to_string());
    ///
    /// assert_eq!("35", dec.clone().truncated_left(1).to_string());
    ///
    /// assert_eq!("5", dec.clone().truncated_left(0).to_string());
    ///
    /// assert_eq!("0", dec.clone().truncated_left(-1).to_string());
    /// ```
    pub fn truncated_left(mut self, magnitude: i16) -> Self {
        self.truncate_left(magnitude);
        self
    }

    /// Truncate the number on the left to a particular magnitude, deleting
    /// digits if necessary.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    ///
    /// let mut dec = FixedDecimal::from(4235);
    /// assert_eq!("4235", dec.to_string());
    ///
    /// dec.truncate_left(5);
    /// assert_eq!("4235", dec.to_string());
    ///
    /// dec.truncate_left(2);
    /// assert_eq!("235", dec.to_string());
    ///
    /// dec.truncate_left(1);
    /// assert_eq!("35", dec.to_string());
    ///
    /// dec.truncate_left(0);
    /// assert_eq!("5", dec.to_string());
    ///
    /// dec.truncate_left(-1);
    /// assert_eq!("0", dec.to_string());
    /// ```
    pub fn truncate_left(&mut self, magnitude: i16) {
        if self.magnitude >= magnitude {
            let positive_magnitude = if magnitude > 0 { magnitude } else { 0 };
            let cut = ((self.magnitude as i32) - (magnitude as i32)) as usize;
            if cut >= self.digits.len() {
                self.digits.clear();
                self.magnitude = 0;
                self.upper_magnitude = positive_magnitude;
                #[cfg(debug_assertions)]
                self.check_invariants();
                return;
            }
            let _ = self.digits.drain(0..cut as usize).count();
            // Count number of leading zeroes
            let extra_zeroes = self.digits.iter().position(|x| *x != 0).unwrap_or(0);
            let _ = self.digits.drain(0..extra_zeroes).count();
            self.magnitude = magnitude - extra_zeroes as i16;
            self.upper_magnitude = positive_magnitude;
        }
        #[cfg(debug_assertions)]
        self.check_invariants();
    }

    /// Zero-pad the number on the right to a particular (negative) magnitude. Will truncate
    /// trailing zeros if necessary, but will not truncate other digits, returning the result.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    /// # use std::str::FromStr;
    ///
    /// let mut dec = FixedDecimal::from_str("123.456").unwrap();
    /// assert_eq!("123.456", dec.to_string());
    ///
    /// assert_eq!("123.456", dec.clone().padded_right(1).to_string());
    ///
    /// assert_eq!("123.456", dec.clone().padded_right(2).to_string());
    ///
    /// assert_eq!("123.4560", dec.clone().padded_right(4).to_string());
    ///
    /// assert_eq!("123.456000", dec.clone().padded_right(6).to_string());
    /// ```
    pub fn padded_right(mut self, negative_magnitude: u16) -> Self {
        self.pad_right(negative_magnitude);
        self
    }

    /// Zero-pad the number on the right to a particular (negative) magnitude. Will truncate
    /// trailing zeros if necessary, but will not truncate other digits.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    /// # use std::str::FromStr;
    ///
    /// let mut dec = FixedDecimal::from_str("123.456").unwrap();
    /// assert_eq!("123.456", dec.to_string());
    ///
    /// dec.pad_right(1);
    /// assert_eq!("123.456", dec.to_string());
    ///
    /// dec.pad_right(2);
    /// assert_eq!("123.456", dec.to_string());
    ///
    /// dec.pad_right(4);
    /// assert_eq!("123.4560", dec.to_string());
    ///
    /// dec.pad_right(6);
    /// assert_eq!("123.456000", dec.to_string());
    /// ```
    pub fn pad_right(&mut self, negative_magnitude: u16) {
        let mut magnitude = if negative_magnitude > (i16::MAX as u16) {
            i16::MIN
        } else {
            -(negative_magnitude as i16)
        };
        let bottom_magnitude = (self.magnitude as i32 - self.digits.len() as i32 + 1) as i16;
        // Do not truncate nonzero digits
        if magnitude >= bottom_magnitude {
            magnitude = bottom_magnitude;
        }

        self.lower_magnitude = magnitude;
        #[cfg(debug_assertions)]
        self.check_invariants();
    }

    /// Returns the [Signum][Signum] of this FixedDecimal.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    /// use fixed_decimal::Signum;
    ///
    /// assert_eq!(Signum::AboveZero, FixedDecimal::from(42).signum());
    /// assert_eq!(Signum::PositiveZero, FixedDecimal::from(0).signum());
    /// assert_eq!(Signum::NegativeZero, FixedDecimal::from(0).negated().signum());
    /// assert_eq!(Signum::BelowZero, FixedDecimal::from(-42).signum());
    /// ```
    pub fn signum(&self) -> Signum {
        let is_zero = self.digits.is_empty();
        match (self.is_negative, is_zero) {
            (false, false) => Signum::AboveZero,
            (false, true) => Signum::PositiveZero,
            (true, false) => Signum::BelowZero,
            (true, true) => Signum::NegativeZero,
        }
    }

    /// Assert that the invariants among struct fields are enforced. Returns true if all are okay.
    /// Call this in any method that mutates the struct fields.
    ///
    /// Example: `debug_assert!(self.check_invariants())`
    #[cfg(debug_assertions)]
    fn check_invariants(&self) {
        // magnitude invariants:
        debug_assert!(
            self.upper_magnitude >= self.magnitude,
            "Upper magnitude too small {:?}",
            self
        );
        debug_assert!(
            self.lower_magnitude <= self.magnitude,
            "Lower magnitude too large {:?}",
            self
        );
        debug_assert!(
            self.upper_magnitude >= 0,
            "Upper magnitude below zero {:?}",
            self
        );
        debug_assert!(
            self.lower_magnitude <= 0,
            "Lower magnitude above zero {:?}",
            self
        );

        // digits invariants:
        let max_len = (self.magnitude as i32 - self.lower_magnitude as i32 + 1) as usize;
        debug_assert!(self.digits.len() <= max_len, "{:?}", self);
        if !self.digits.is_empty() {
            debug_assert_ne!(self.digits[0], 0, "Starts with a zero {:?}", self);
            debug_assert_ne!(
                self.digits[self.digits.len() - 1],
                0,
                "Ends with a zero {:?}",
                self
            );
        }
    }
}

impl writeable::Writeable for FixedDecimal {
    /// Render the `FixedDecimal` as a string of ASCII digits with a possible decimal point.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    /// use writeable::Writeable;
    ///
    /// let dec = FixedDecimal::from(42);
    /// let mut result = String::with_capacity(dec.write_len().capacity());
    /// dec.write_to(&mut result).expect("write_to(String) should not fail");
    /// assert_eq!("42", result);
    /// ```
    fn write_to<W: fmt::Write + ?Sized>(&self, sink: &mut W) -> fmt::Result {
        if self.is_negative {
            sink.write_char('-')?;
        }
        for m in self.magnitude_range().rev() {
            if m == -1 {
                sink.write_char('.')?;
            }
            let d = self.digit_at(m);
            sink.write_char((b'0' + d) as char)?;
        }
        Ok(())
    }

    /// The number of bytes that will be written by `FixedDecimal::write_to`. Use this function to
    /// pre-allocate capacity in the destination buffer.
    ///
    /// # Examples
    ///
    /// ```
    /// use fixed_decimal::FixedDecimal;
    /// use writeable::Writeable;
    /// use writeable::LengthHint;
    ///
    /// let dec = FixedDecimal::from(-5000).multiplied_pow10(-2).expect("Bounds are small");
    /// let result = dec.writeable_to_string();
    /// assert_eq!(LengthHint::exact(6), dec.write_len());
    /// ```
    fn write_len(&self) -> writeable::LengthHint {
        writeable::LengthHint::exact(1)
            + ((self.upper_magnitude as i32 - self.lower_magnitude as i32) as usize)
            + (if self.is_negative { 1 } else { 0 })
            + (if self.lower_magnitude < 0 { 1 } else { 0 })
    }
}

/// Renders the `FixedDecimal` according to the syntax documented in `FixedDecimal::write_to`.
impl fmt::Display for FixedDecimal {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeable::Writeable::write_to(self, f)
    }
}

impl FromStr for FixedDecimal {
    type Err = Error;
    fn from_str(input_str: &str) -> Result<Self, Self::Err> {
        // input_str: the input string
        // no_sign_str: the input string when the sign is removed from it
        // Check if the input string is "" or "-"
        if input_str.is_empty() || input_str == "-" {
            return Err(Error::Syntax);
        }
        let input_str = input_str.as_bytes();
        let is_negative = input_str[0] == b'-';
        let no_sign_str = if is_negative {
            &input_str[1..]
        } else {
            input_str
        };
        // Compute length of each string once and store it, so if you use that multiple times,
        // you don't compute it multiple times
        // has_dot: shows if your input has dot in it
        // has_exponent: shows if your input has an exponent in it
        // dot_index: gives the index of dot (after removing the sign) -- equal to length of
        // the no_sign_str if there is no dot
        // exponent_index: gives the index of exponent (after removing the sign) -- equal to length of
        // the no_sign_str if there is no dot
        let mut has_dot = false;
        let mut has_exponent = false;
        let mut dot_index = no_sign_str.len();
        let mut exponent_index = no_sign_str.len();
        // The following loop computes has_dot, dot_index, and also checks to see if all
        // characters are digits and if you have at most one dot
        // Note: Input of format 111_123 is detected as syntax error here
        // Note: Input starting or ending with a dot is detected as syntax error here (Ex: .123, 123.)
        for (i, c) in no_sign_str.iter().enumerate() {
            if *c == b'.' {
                if has_dot || has_exponent {
                    // multiple dots or dots after the exponent
                    return Err(Error::Syntax);
                }
                dot_index = i;
                has_dot = true;
                if i == 0 || i == no_sign_str.len() - 1 {
                    return Err(Error::Syntax);
                }
            } else if *c == b'e' || *c == b'E' {
                if has_exponent {
                    // multiple exponents
                    return Err(Error::Syntax);
                }
                exponent_index = i;
                has_exponent = true;
                if i == 0 || i == no_sign_str.len() - 1 {
                    return Err(Error::Syntax);
                }
            } else if *c == b'-' {
                // Allow a single minus sign after the exponent
                if has_exponent && exponent_index == i - 1 {
                    continue;
                } else {
                    return Err(Error::Syntax);
                }
            } else if *c < b'0' || *c > b'9' {
                return Err(Error::Syntax);
            }
        }

        // The string without the exponent (or sign)
        // We do the bulk of the calculation on this string,
        // and extract the exponent at the end
        let no_exponent_str = &no_sign_str[..exponent_index];

        // If there was no dot, truncate the dot index
        if dot_index > exponent_index {
            dot_index = exponent_index;
        }

        // defining the output dec here and set its sign
        let mut dec = Self {
            is_negative,
            ..Default::default()
        };

        // no_dot_str_len: shows length of the string after removing the dot
        let mut no_dot_str_len = no_exponent_str.len();
        if has_dot {
            no_dot_str_len -= 1;
        }

        // Computing DecimalFixed.upper_magnitude
        let temp_upper_magnitude = dot_index - 1;
        if temp_upper_magnitude > i16::MAX as usize {
            return Err(Error::Limit);
        }
        dec.upper_magnitude = temp_upper_magnitude as i16;

        // Computing DecimalFixed.lower_magnitude
        // Note: ((i16::MIN as u16) as usize) == 32768
        let temp_lower_magnitude = no_dot_str_len - dot_index;
        if temp_lower_magnitude > (i16::MIN as u16) as usize {
            return Err(Error::Limit);
        }
        dec.lower_magnitude = (temp_lower_magnitude as i16).wrapping_neg();

        // leftmost_digit: index of the first non-zero digit
        // rightmost_digit: index of the first element after the last non-zero digit
        // Example:
        //     input string    leftmost_digit     rightmost_digit
        //     00123000              2                  5
        //     0.0123000             3                  6
        //     001.23000             2                  6
        //     001230.00             2                  5
        // Compute leftmost_digit
        let leftmost_digit = no_exponent_str
            .iter()
            .position(|c| *c != b'.' && *c != b'0');

        // If the input only has zeros (like 000, 00.0, -00.000) we handle the situation here
        // by returning the dec and don't running the rest of the code
        let leftmost_digit = if let Some(leftmost_digit) = leftmost_digit {
            leftmost_digit
        } else {
            return Ok(dec);
        };

        // Else if the input is not all zeros, we compute its magnitude:
        // Note that we can cast with "as" here because lower and upper magnitude have been checked already
        let mut temp_magnitude = ((dot_index as i32) - (leftmost_digit as i32) - 1i32) as i16;
        if dot_index < leftmost_digit {
            temp_magnitude += 1;
        }
        dec.magnitude = temp_magnitude;

        // Compute the index where the rightmost_digit ends
        let rightmost_digit_end = no_exponent_str
            .iter()
            .rposition(|c| *c != b'.' && *c != b'0')
            .map(|p| p + 1)
            .unwrap_or(no_exponent_str.len());

        // digits_str_len: shows the length of digits (Ex. 0012.8900 --> 4)
        let mut digits_str_len = rightmost_digit_end - leftmost_digit;
        if leftmost_digit < dot_index && dot_index < rightmost_digit_end {
            digits_str_len -= 1;
        }

        // Constructing DecimalFixed.digits
        let v: SmallVec<[u8; 8]> = no_exponent_str[leftmost_digit..rightmost_digit_end]
            .iter()
            .filter(|c| **c != b'.')
            .map(|c| c - b'0')
            .collect();

        let v_len = v.len();
        debug_assert_eq!(v_len, digits_str_len);
        dec.digits = v;

        // Extract the exponent part
        if has_exponent {
            let mut pow = 0;
            let mut pos_neg = 1;
            for digit in &no_sign_str[exponent_index + 1..] {
                if *digit == b'-' {
                    pos_neg = -1;
                    continue;
                }
                pow *= 10;
                pow += (digit - b'0') as i16;
            }

            dec.multiply_pow10(pos_neg * pow)?;

            // Clean up magnitude after multiplication
            if dec.magnitude > 0 {
                dec.upper_magnitude = dec.magnitude;
            }
            let neg_mag = dec.magnitude - dec.digits.len() as i16 + 1;
            if neg_mag < 0 {
                dec.lower_magnitude = neg_mag;
            }
        }

        Ok(dec)
    }
}

/// Specifies the precision of a floating point value when constructing a FixedDecimal.
///
/// IEEE 754 is a representation of a point on the number line. On the other hand, FixedDecimal
/// specifies not only the point on the number line but also the precision of the number to a
/// specific power of 10. This enum augments a floating-point value with the additional
/// information required by FixedDecimal.
#[cfg(feature = "ryu")]
#[derive(Debug, Clone, Copy)]
pub enum DoublePrecision {
    /// Specify that the floating point number is integer-valued.
    ///
    /// If the floating point is not actually integer-valued, an error will be returned.
    Integer,

    /// Specify that the floating point number is precise to a specific power of 10.
    /// The number may be rounded or trailing zeros may be added as necessary.
    Magnitude(i16, RoundingMode),

    /// Specify that the floating point number is precise to a specific number of significant digits.
    /// The number may be rounded or trailing zeros may be added as necessary.
    ///
    /// The number requested may not be zero
    SignificantDigits(u8, RoundingMode),

    /// Specify that the floating point number is precise to the maximum representable by IEEE.
    ///
    /// This results in a FixedDecimal having enough digits to recover the original floating point
    /// value, with no trailing zeros.
    Maximum,
}

/// Specifies how numbers should be rounded
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum RoundingMode {
    /// Return an error if the number has trailing nonzero digits that need to be rounded.
    Unnecessary,

    /// Round toward zero (remove, or truncate, all trailing digits).
    Truncate,

    /// Round ties away from zero.
    HalfExpand,
    // TODO(#1177): Add more rounding modes.
}

#[cfg(feature = "ryu")]
impl FixedDecimal {
    /// Construct a [`FixedDecimal`] from an f64. This uses `ryu` and
    /// goes through an intermediate string representation, so is not
    /// fully efficient. See [icu4x#166](https://github.com/unicode-org/icu4x/issues/166) for
    /// more details.
    ///
    /// This function can be made available with the `"ryu"` feature.
    ///
    /// ```rust
    /// use fixed_decimal::{DoublePrecision, FixedDecimal};
    /// use writeable::Writeable;
    ///
    /// let decimal = FixedDecimal::new_from_f64(0.012345678, DoublePrecision::Maximum).unwrap();
    /// assert_eq!(decimal.writeable_to_string(), "0.012345678");
    ///
    /// let decimal = FixedDecimal::new_from_f64(-123456.78, DoublePrecision::Maximum).unwrap();
    /// assert_eq!(decimal.writeable_to_string(), "-123456.78");
    ///
    /// let decimal = FixedDecimal::new_from_f64(12345678000., DoublePrecision::Maximum).unwrap();
    /// assert_eq!(decimal.writeable_to_string(), "12345678000");
    /// ```
    pub fn new_from_f64(float: f64, precision: DoublePrecision) -> Result<Self, Error> {
        let mut decimal = Self::new_from_f64_raw(float)?;
        let n_digits = decimal.digits.len();
        // magnitude of the lowest digit in self.digits
        let lowest_magnitude = decimal.magnitude - n_digits as i16 + 1;
        // ryū will usually tack on a `.0` to integers which gets included when parsing.
        // Explicitly remove it before doing anything else
        if lowest_magnitude >= 0 && decimal.lower_magnitude < 0 {
            decimal.lower_magnitude = 0;
        }
        match precision {
            DoublePrecision::Maximum => (),
            DoublePrecision::Integer => {
                if lowest_magnitude < 0 {
                    return Err(Error::Limit);
                }
            }
            DoublePrecision::Magnitude(mag, mode) => {
                if mag > lowest_magnitude {
                    let round_by = (mag - lowest_magnitude) as u16;

                    if round_by as usize <= n_digits {
                        decimal.round_trailing_digits(round_by, mode)?;
                    } else {
                        // If we need to round by more digits than rounding can ever produce
                        // the number is zero
                        decimal = Default::default();
                    }
                }
                if mag < 0 {
                    // If the target magnitude was negative, make
                    // sure we update the lower magnitude to match it
                    decimal.lower_magnitude = mag;
                } else if decimal.lower_magnitude < 0 {
                    // If the target magnitude was positive,
                    // we may have truncated digits off the right
                    // side, reset the lower magnitude
                    decimal.lower_magnitude = 0;
                }
            }
            DoublePrecision::SignificantDigits(sig, mode) => {
                let sig = sig as usize;
                if sig == 0 {
                    return Err(Error::Limit);
                }
                if sig < n_digits {
                    let round_by = (n_digits - sig) as u16;
                    decimal.round_trailing_digits(round_by, mode)?;
                    // It may have rounded up by one
                    debug_assert!(decimal.digits.len() <= sig as usize);
                }
                let target_lowest_magnitude = decimal.magnitude - sig as i16 + 1;
                if target_lowest_magnitude <= 0 {
                    // If the target magnitude was negative, make sure we update
                    // the lower magnitude to match it
                    decimal.lower_magnitude = target_lowest_magnitude;
                } else if decimal.lower_magnitude < 0 {
                    // If the target magnitude was positive,
                    // we may have truncated digits off the right side
                    // of the decimal point, reset the lower magnitude
                    decimal.lower_magnitude = 0;
                }
            }
        }
        #[cfg(debug_assertions)]
        decimal.check_invariants();
        Ok(decimal)
    }
    /// Internal function for parsing directly from floats using ryū
    fn new_from_f64_raw(float: f64) -> Result<Self, Error> {
        if !float.is_finite() {
            return Err(Error::Limit);
        }
        // note: this does not heap allocate
        let mut buf = ryu::Buffer::new();
        let formatted = buf.format_finite(float);
        Self::from_str(formatted)
    }

    /// Internal function to round off `n` digits
    /// from the right
    ///
    /// `self` must have at least `n` digits
    ///
    /// This may end up adding a digit to the left!
    ///
    /// This will not change the number of significant digits, it simply exists
    /// to *round* them (and will typically reduce the size of `self.digits`)
    ///
    /// This function is responsible for fixing `digits`, `magnitude`, and `upper_magnitude`.
    /// It will only modify upper_magnitude when it is not large enough to fit the rounded number.
    /// The caller may fix up `lower_magnitude` by whatever scheme it desires
    fn round_trailing_digits(&mut self, n: u16, mode: RoundingMode) -> Result<(), Error> {
        /// For fixing up invariants after truncation
        ///
        /// Basically will ensure that we don't end with any zeroes
        fn fixup_invariants(dec: &mut FixedDecimal) {
            let first_nonzero = dec.digits.iter().rposition(|d| *d != 0).unwrap_or(0);
            dec.digits.truncate(first_nonzero + 1);
            if dec.digits.is_empty() {
                dec.magnitude = 0;
            }
        }

        debug_assert!(
            self.digits.len() >= n as usize,
            "Attempted to round off {} digits of number that has only {}",
            n,
            self.digits.len()
        );
        if n == 0 {
            // no point attempting to round off any digits
            #[cfg(debug_assertions)]
            self.check_invariants();
            return Ok(());
        }

        let cutoff = self.digits.len() - n as usize;

        match mode {
            RoundingMode::Unnecessary => {
                // If we got to this point then rounding was not unnecessary
                return Err(Error::Limit);
            }
            RoundingMode::Truncate => {
                self.digits.truncate(cutoff);
                fixup_invariants(self);
                #[cfg(debug_assertions)]
                self.check_invariants();
                return Ok(());
            }
            // continue to rest of routine
            RoundingMode::HalfExpand => (),
        }

        // Do we need to round our significant digits?
        // TODO(#1177): This heuristic is insufficient for most rounding modes.
        let round = self.digits[cutoff] >= 5;

        self.digits.truncate(cutoff);

        if round {
            // how much to truncate by after rounding
            let mut round_truncate = cutoff;
            for digit in self.digits[..cutoff].iter_mut().rev() {
                if *digit == 9 {
                    // Truncate this digit, the next digit can be rounded
                    round_truncate -= 1;
                } else {
                    // We need to update this digit, then we're done
                    *digit += 1;
                    self.digits.truncate(round_truncate);
                    #[cfg(debug_assertions)]
                    self.check_invariants();
                    return Ok(());
                }
            }

            // If we reached this point then the last digit was 9 and we need to insert
            // another digit at the beginning

            self.digits.clear();
            self.digits.push(1);
            debug_assert!(self.upper_magnitude >= 0);
            self.magnitude += 1;
            if self.upper_magnitude < self.magnitude {
                self.upper_magnitude = self.magnitude;
            }
        } else {
            fixup_invariants(self);
        }
        #[cfg(debug_assertions)]
        self.check_invariants();
        Ok(())
    }
}

#[cfg(feature = "ryu")]
#[test]
fn test_round() {
    #[derive(Debug)]
    struct TestCase {
        pub input: f64,
        pub round: u16,
        pub expected: &'static str,
    }
    let cases = [
        TestCase {
            input: 1.234567,
            round: 2,
            expected: "1.234600",
        },
        TestCase {
            input: 1.23456789,
            round: 2,
            expected: "1.23456800",
        },
        TestCase {
            input: 88899971.,
            round: 2,
            expected: "88900000.0",
        },
        TestCase {
            input: 999988.,
            round: 2,
            expected: "1000000.0",
        },
        TestCase {
            input: 0.9,
            round: 1,
            expected: "1.0",
        },
        TestCase {
            input: 9.9,
            round: 1,
            expected: "10.0",
        },
        TestCase {
            input: 9.9,
            round: 2,
            expected: "10.0",
        },
    ];

    for case in &cases {
        let mut dec = FixedDecimal::new_from_f64_raw(case.input).unwrap();
        dec.round_trailing_digits(case.round, RoundingMode::HalfExpand)
            .unwrap();
        writeable::assert_writeable_eq!(dec, case.expected, "{:?}", case);
    }
}

#[cfg(feature = "ryu")]
#[test]
fn test_float() {
    #[derive(Debug)]
    struct TestCase {
        pub input: f64,
        pub precision: DoublePrecision,
        pub expected: &'static str,
    }
    let cases = [
        TestCase {
            input: 1.234567,
            precision: DoublePrecision::Maximum,
            expected: "1.234567",
        },
        TestCase {
            input: 888999.,
            precision: DoublePrecision::Maximum,
            expected: "888999",
        },
        // HalfExpand tests
        TestCase {
            input: 1.234567,
            precision: DoublePrecision::Magnitude(-2, RoundingMode::HalfExpand),
            expected: "1.23",
        },
        TestCase {
            input: 1.235567,
            precision: DoublePrecision::Magnitude(-2, RoundingMode::HalfExpand),
            expected: "1.24",
        },
        TestCase {
            input: 1.2002,
            precision: DoublePrecision::Magnitude(-3, RoundingMode::HalfExpand),
            expected: "1.200",
        },
        TestCase {
            input: 888999.,
            precision: DoublePrecision::Magnitude(2, RoundingMode::HalfExpand),
            expected: "889000",
        },
        TestCase {
            input: 888999.,
            precision: DoublePrecision::Magnitude(4, RoundingMode::HalfExpand),
            expected: "890000",
        },
        TestCase {
            input: 0.9,
            precision: DoublePrecision::Magnitude(0, RoundingMode::HalfExpand),
            expected: "1",
        },
        TestCase {
            input: 0.9,
            precision: DoublePrecision::Magnitude(2, RoundingMode::HalfExpand),
            expected: "0",
        },
        TestCase {
            input: 0.009,
            precision: DoublePrecision::Magnitude(-2, RoundingMode::HalfExpand),
            expected: "0.01",
        },
        TestCase {
            input: 0.009,
            precision: DoublePrecision::Magnitude(-1, RoundingMode::HalfExpand),
            expected: "0.0",
        },
        TestCase {
            input: 0.009,
            precision: DoublePrecision::Magnitude(0, RoundingMode::HalfExpand),
            expected: "0",
        },
        TestCase {
            input: 0.0000009,
            precision: DoublePrecision::Magnitude(0, RoundingMode::HalfExpand),
            expected: "0",
        },
        TestCase {
            input: 0.0000009,
            precision: DoublePrecision::Magnitude(-7, RoundingMode::HalfExpand),
            expected: "0.0000009",
        },
        TestCase {
            input: 0.0000009,
            precision: DoublePrecision::Magnitude(-6, RoundingMode::HalfExpand),
            expected: "0.000001",
        },
        TestCase {
            input: 1.234567,
            precision: DoublePrecision::SignificantDigits(1, RoundingMode::HalfExpand),
            expected: "1",
        },
        TestCase {
            input: 1.234567,
            precision: DoublePrecision::SignificantDigits(2, RoundingMode::HalfExpand),
            expected: "1.2",
        },
        TestCase {
            input: 1.234567,
            precision: DoublePrecision::SignificantDigits(4, RoundingMode::HalfExpand),
            expected: "1.235",
        },
        TestCase {
            input: 1.234567,
            precision: DoublePrecision::SignificantDigits(10, RoundingMode::HalfExpand),
            expected: "1.234567000",
        },
        TestCase {
            input: 888999.,
            precision: DoublePrecision::SignificantDigits(1, RoundingMode::HalfExpand),
            expected: "900000",
        },
        TestCase {
            input: 888999.,
            precision: DoublePrecision::SignificantDigits(2, RoundingMode::HalfExpand),
            expected: "890000",
        },
        TestCase {
            input: 888999.,
            precision: DoublePrecision::SignificantDigits(4, RoundingMode::HalfExpand),
            expected: "889000",
        },
        TestCase {
            input: 988999.,
            precision: DoublePrecision::SignificantDigits(1, RoundingMode::HalfExpand),
            expected: "1000000",
        },
        TestCase {
            input: 99888.,
            precision: DoublePrecision::SignificantDigits(1, RoundingMode::HalfExpand),
            expected: "100000",
        },
        TestCase {
            input: 99888.,
            precision: DoublePrecision::SignificantDigits(2, RoundingMode::HalfExpand),
            expected: "100000",
        },
        TestCase {
            input: 99888.,
            precision: DoublePrecision::SignificantDigits(3, RoundingMode::HalfExpand),
            expected: "99900",
        },
        TestCase {
            input: 9.9888,
            precision: DoublePrecision::SignificantDigits(1, RoundingMode::HalfExpand),
            expected: "10",
        },
        TestCase {
            input: 9.9888,
            precision: DoublePrecision::SignificantDigits(2, RoundingMode::HalfExpand),
            expected: "10",
        },
        TestCase {
            input: 9.9888,
            precision: DoublePrecision::SignificantDigits(3, RoundingMode::HalfExpand),
            expected: "9.99",
        },
        // truncation tests
        TestCase {
            input: 888999.,
            precision: DoublePrecision::Magnitude(4, RoundingMode::Truncate),
            expected: "880000",
        },
        TestCase {
            input: 0.009,
            precision: DoublePrecision::Magnitude(-2, RoundingMode::Truncate),
            expected: "0.00",
        },
        TestCase {
            input: 0.0000009,
            precision: DoublePrecision::Magnitude(-7, RoundingMode::Truncate),
            expected: "0.0000009",
        },
        TestCase {
            input: 9.9888,
            precision: DoublePrecision::SignificantDigits(3, RoundingMode::Truncate),
            expected: "9.98",
        },
        TestCase {
            input: 888999.,
            precision: DoublePrecision::Integer,
            expected: "888999",
        },
    ];

    for case in &cases {
        let dec = FixedDecimal::new_from_f64(case.input, case.precision).unwrap();
        writeable::assert_writeable_eq!(dec, case.expected, "{:?}", case);
    }
}

#[test]
fn test_basic() {
    #[derive(Debug)]
    struct TestCase {
        pub input: isize,
        pub delta: i16,
        pub expected: &'static str,
    }
    let cases = [
        TestCase {
            input: 51423,
            delta: 0,
            expected: "51423",
        },
        TestCase {
            input: 51423,
            delta: -2,
            expected: "514.23",
        },
        TestCase {
            input: 51423,
            delta: -5,
            expected: "0.51423",
        },
        TestCase {
            input: 51423,
            delta: -8,
            expected: "0.00051423",
        },
        TestCase {
            input: 51423,
            delta: 3,
            expected: "51423000",
        },
        TestCase {
            input: 0,
            delta: 0,
            expected: "0",
        },
        TestCase {
            input: 0,
            delta: -2,
            expected: "0.00",
        },
        TestCase {
            input: 0,
            delta: 3,
            expected: "0000",
        },
        TestCase {
            input: 500,
            delta: 0,
            expected: "500",
        },
        TestCase {
            input: 500,
            delta: -1,
            expected: "50.0",
        },
        TestCase {
            input: 500,
            delta: -2,
            expected: "5.00",
        },
        TestCase {
            input: 500,
            delta: -3,
            expected: "0.500",
        },
        TestCase {
            input: 500,
            delta: -4,
            expected: "0.0500",
        },
        TestCase {
            input: 500,
            delta: 3,
            expected: "500000",
        },
        TestCase {
            input: -123,
            delta: 0,
            expected: "-123",
        },
        TestCase {
            input: -123,
            delta: -2,
            expected: "-1.23",
        },
        TestCase {
            input: -123,
            delta: -5,
            expected: "-0.00123",
        },
        TestCase {
            input: -123,
            delta: 3,
            expected: "-123000",
        },
    ];
    for cas in &cases {
        let mut dec: FixedDecimal = cas.input.into();
        // println!("{}", cas.input + 0.01);
        dec.multiply_pow10(cas.delta).unwrap();
        writeable::assert_writeable_eq!(dec, cas.expected, "{:?}", cas);
    }
}

#[test]
fn test_from_str() {
    #[derive(Debug)]
    struct TestCase {
        pub input_str: &'static str,
    }
    let cases = [
        TestCase {
            input_str: "-00123400",
        },
        TestCase {
            input_str: "0.0123400",
        },
        TestCase {
            input_str: "-00.123400",
        },
        TestCase {
            input_str: "0012.3400",
        },
        TestCase {
            input_str: "-0012340.0",
        },
        TestCase { input_str: "1234" },
        TestCase {
            input_str: "0.000000001",
        },
        TestCase {
            input_str: "0.0000000010",
        },
        TestCase {
            input_str: "1000000",
        },
        TestCase {
            input_str: "10000001",
        },
        TestCase { input_str: "123" },
        TestCase {
            input_str: "922337203685477580898230948203840239384.9823094820384023938423424",
        },
        TestCase {
            input_str: "009223372000.003685477580898230948203840239384000",
        },
        TestCase {
            input_str: "009223372000.003685477580898230948203840239384000",
        },
        TestCase { input_str: "0" },
        TestCase { input_str: "-0" },
        TestCase { input_str: "000" },
        TestCase { input_str: "-00.0" },
    ];
    for cas in &cases {
        let input_str_roundtrip = FixedDecimal::from_str(cas.input_str).unwrap().to_string();
        assert_eq!(cas.input_str, input_str_roundtrip);
    }
}

#[test]
fn test_from_str_scientific() {
    #[derive(Debug)]
    struct TestCase {
        pub input_str: &'static str,
        pub output: &'static str,
    }
    let cases = [
        TestCase {
            input_str: "-5.4e10",
            output: "-54000000000",
        },
        TestCase {
            input_str: "5.4e-2",
            output: "0.054",
        },
        TestCase {
            input_str: "54.1e-2",
            output: "0.541",
        },
        TestCase {
            input_str: "-541e-2",
            output: "-5.41",
        },
        TestCase {
            input_str: "0.009E10",
            output: "90000000",
        },
        TestCase {
            input_str: "-9000E-10",
            output: "-0.0000009",
        },
    ];
    for cas in &cases {
        let input_str_roundtrip = FixedDecimal::from_str(cas.input_str).unwrap().to_string();
        assert_eq!(cas.output, input_str_roundtrip);
    }
}

#[test]
fn test_isize_limits() {
    for num in &[core::isize::MAX, core::isize::MIN] {
        let dec: FixedDecimal = (*num).into();
        let dec_str = dec.to_string();
        assert_eq!(num.to_string(), dec_str);
        assert_eq!(dec, FixedDecimal::from_str(&dec_str).unwrap());
        writeable::assert_writeable_eq!(dec, dec_str);
    }
}

#[test]
fn test_ui128_limits() {
    for num in &[core::i128::MAX, core::i128::MIN] {
        let dec: FixedDecimal = (*num).into();
        let dec_str = dec.to_string();
        assert_eq!(num.to_string(), dec_str);
        assert_eq!(dec, FixedDecimal::from_str(&dec_str).unwrap());
        writeable::assert_writeable_eq!(dec, dec_str);
    }
    for num in &[core::u128::MAX, core::u128::MIN] {
        let dec: FixedDecimal = (*num).into();
        let dec_str = dec.to_string();
        assert_eq!(num.to_string(), dec_str);
        assert_eq!(dec, FixedDecimal::from_str(&dec_str).unwrap());
        writeable::assert_writeable_eq!(dec, dec_str);
    }
}

#[test]
fn test_upper_magnitude_bounds() {
    let mut dec: FixedDecimal = 98765.into();
    assert_eq!(dec.upper_magnitude, 4);
    dec.multiply_pow10(32763).unwrap();
    assert_eq!(dec.upper_magnitude, core::i16::MAX);
    let dec_backup = dec.clone();
    assert_eq!(Error::Limit, dec.multiply_pow10(1).unwrap_err());
    assert_eq!(dec, dec_backup, "Value should be unchanged on failure");

    // Checking from_str for dec (which is valid)
    let dec_roundtrip = FixedDecimal::from_str(&dec.to_string()).unwrap();
    assert_eq!(dec, dec_roundtrip);
}

#[test]
fn test_lower_magnitude_bounds() {
    let mut dec: FixedDecimal = 98765.into();
    assert_eq!(dec.lower_magnitude, 0);
    dec.multiply_pow10(-32768).unwrap();
    assert_eq!(dec.lower_magnitude, core::i16::MIN);
    let dec_backup = dec.clone();
    assert_eq!(Error::Limit, dec.multiply_pow10(-1).unwrap_err());
    assert_eq!(dec, dec_backup, "Value should be unchanged on failure");

    // Checking from_str for dec (which is valid)
    let dec_roundtrip = FixedDecimal::from_str(&dec.to_string()).unwrap();
    assert_eq!(dec, dec_roundtrip);
}

#[test]
fn test_zero_str_bounds() {
    #[derive(Debug)]
    struct TestCase {
        pub zeros_before_dot: usize,
        pub zeros_after_dot: usize,
        pub expected_err: Option<Error>,
    }
    // Note that core::i16::MAX = 32768
    let cases = [
        TestCase {
            zeros_before_dot: 32768,
            zeros_after_dot: 0,
            expected_err: None,
        },
        TestCase {
            zeros_before_dot: 32767,
            zeros_after_dot: 0,
            expected_err: None,
        },
        TestCase {
            zeros_before_dot: 32769,
            zeros_after_dot: 0,
            expected_err: Some(Error::Limit),
        },
        TestCase {
            zeros_before_dot: 0,
            zeros_after_dot: 32769,
            expected_err: Some(Error::Limit),
        },
        TestCase {
            zeros_before_dot: 32768,
            zeros_after_dot: 32768,
            expected_err: None,
        },
        TestCase {
            zeros_before_dot: 32769,
            zeros_after_dot: 32768,
            expected_err: Some(Error::Limit),
        },
        TestCase {
            zeros_before_dot: 32768,
            zeros_after_dot: 32769,
            expected_err: Some(Error::Limit),
        },
        TestCase {
            zeros_before_dot: 32767,
            zeros_after_dot: 32769,
            expected_err: Some(Error::Limit),
        },
        TestCase {
            zeros_before_dot: 32767,
            zeros_after_dot: 32767,
            expected_err: None,
        },
        TestCase {
            zeros_before_dot: 32768,
            zeros_after_dot: 32767,
            expected_err: None,
        },
    ];
    for cas in &cases {
        let mut input_str = format!("{:0fill$}", 0, fill = cas.zeros_before_dot);
        if cas.zeros_after_dot > 0 {
            input_str.push('.');
            input_str.push_str(&format!("{:0fill$}", 0, fill = cas.zeros_after_dot));
        }
        match FixedDecimal::from_str(&input_str) {
            Ok(dec) => {
                assert_eq!(cas.expected_err, None, "{:?}", cas);
                assert_eq!(input_str, dec.to_string(), "{:?}", cas);
            }
            Err(err) => {
                assert_eq!(cas.expected_err, Some(err), "{:?}", cas);
            }
        }
    }
}

#[test]
fn test_syntax_error() {
    #[derive(Debug)]
    struct TestCase {
        pub input_str: &'static str,
        pub expected_err: Option<Error>,
    }
    let cases = [
        TestCase {
            input_str: "-12a34",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "0.0123√400",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "0.012.3400",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "-0-0123400",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "0-0123400",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "-.00123400",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "-0.00123400",
            expected_err: None,
        },
        TestCase {
            input_str: ".00123400",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "00123400.",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "00123400.0",
            expected_err: None,
        },
        TestCase {
            input_str: "123_456",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "-",
            expected_err: Some(Error::Syntax),
        },
        TestCase {
            input_str: "-1",
            expected_err: None,
        },
    ];
    for cas in &cases {
        match FixedDecimal::from_str(cas.input_str) {
            Ok(dec) => {
                assert_eq!(cas.expected_err, None, "{:?}", cas);
                assert_eq!(cas.input_str, dec.to_string(), "{:?}", cas);
            }
            Err(err) => {
                assert_eq!(cas.expected_err, Some(err), "{:?}", cas);
            }
        }
    }
}

#[test]
fn test_signum_zero() {
    #[derive(Debug)]
    struct TestCase {
        pub fixed_decimal: FixedDecimal,
        pub expected_signum: Signum,
    }
    let cases = [
        TestCase {
            fixed_decimal: Default::default(),
            expected_signum: Signum::PositiveZero,
        },
        TestCase {
            fixed_decimal: FixedDecimal::from(0),
            expected_signum: Signum::PositiveZero,
        },
        TestCase {
            fixed_decimal: FixedDecimal::from(0).negated(),
            expected_signum: Signum::NegativeZero,
        },
        TestCase {
            fixed_decimal: FixedDecimal::from_str("0").unwrap(),
            expected_signum: Signum::PositiveZero,
        },
        TestCase {
            fixed_decimal: FixedDecimal::from_str("000").unwrap(),
            expected_signum: Signum::PositiveZero,
        },
        TestCase {
            fixed_decimal: FixedDecimal::from_str("-0.000").unwrap(),
            expected_signum: Signum::NegativeZero,
        },
        TestCase {
            fixed_decimal: FixedDecimal::from_str("000.000").unwrap(),
            expected_signum: Signum::PositiveZero,
        },
    ];
    for cas in &cases {
        let signum = cas.fixed_decimal.signum();
        assert_eq!(cas.expected_signum, signum, "{:?}", cas);
    }
}

#[test]
fn test_pad() {
    let mut dec = FixedDecimal::from_str("-0.42").unwrap();
    assert_eq!("-0.42", dec.to_string());

    dec.pad_left(1);
    assert_eq!("-0.42", dec.to_string());

    dec.pad_left(4);
    assert_eq!("-0000.42", dec.to_string());

    dec.pad_left(2);
    assert_eq!("-00.42", dec.to_string());
}

#[test]
fn test_truncate() {
    let mut dec = FixedDecimal::from(1000);
    assert_eq!("1000", dec.to_string());

    dec.truncate_left(2);
    assert_eq!("000", dec.to_string());

    dec.truncate_left(0);
    assert_eq!("0", dec.to_string());

    dec.truncate_left(3);
    assert_eq!("0", dec.to_string());

    let mut dec = FixedDecimal::from_str("0.456").unwrap();
    assert_eq!("0.456", dec.to_string());

    dec.truncate_left(0);
    assert_eq!("0.456", dec.to_string());

    dec.truncate_left(-1);
    assert_eq!("0.456", dec.to_string());

    dec.truncate_left(-2);
    assert_eq!("0.056", dec.to_string());

    dec.truncate_left(-3);
    assert_eq!("0.006", dec.to_string());

    dec.truncate_left(-4);
    assert_eq!("0.000", dec.to_string());

    let mut dec = FixedDecimal::from_str("100.01").unwrap();
    dec.truncate_left(1);
    assert_eq!("00.01", dec.to_string());
}