1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
// Copyright © 2018–2019 Trevor Spiteri
// This library is free software: you can redistribute it and/or
// modify it under the terms of either
//
// * the Apache License, Version 2.0 or
// * the MIT License
//
// at your option.
//
// You should have recieved copies of the Apache License and the MIT
// License along with the library. If not, see
// <https://www.apache.org/licenses/LICENSE-2.0> and
// <https://opensource.org/licenses/MIT>.
#![allow(clippy::suspicious_op_assign_impl)]
use crate::{
from_str::ParseFixedError,
traits::{Fixed, FixedSigned, FixedUnsigned, FromFixed, ToFixed},
types::extra::{LeEqU128, LeEqU16, LeEqU32, LeEqU64, LeEqU8},
FixedI128, FixedI16, FixedI32, FixedI64, FixedI8, FixedU128, FixedU16, FixedU32, FixedU64,
FixedU8,
};
use core::{
fmt::{Display, Formatter, Result as FmtResult},
iter::{Product, Sum},
mem,
ops::{
Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div,
DivAssign, Mul, MulAssign, Neg, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub,
SubAssign,
},
str::FromStr,
};
/// Provides intentionally wrapped arithmetic on fixed-point numbers.
///
/// The underlying value can be retrieved through the `.0` index.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let max = Wrapping(I16F16::max_value());
/// let delta = Wrapping(I16F16::from_bits(1));
/// assert_eq!(I16F16::min_value(), (max + delta).0);
/// ```
#[repr(transparent)]
#[derive(Clone, Copy, Default, Hash, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct Wrapping<F>(pub F);
impl<F: Fixed> Wrapping<F> {
/// Returns the smallest value that can be represented.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert_eq!(Wrapping::<I16F16>::min_value(), Wrapping(I16F16::min_value()));
/// ```
#[inline]
pub fn min_value() -> Wrapping<F> {
Wrapping(F::min_value())
}
/// Returns the largest value that can be represented.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert_eq!(Wrapping::<I16F16>::max_value(), Wrapping(I16F16::max_value()));
/// ```
#[inline]
pub fn max_value() -> Wrapping<F> {
Wrapping(F::max_value())
}
/// Returns the number of integer bits.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert_eq!(Wrapping::<I16F16>::int_nbits(), I16F16::int_nbits());
/// ```
#[inline]
pub fn int_nbits() -> u32 {
F::int_nbits()
}
/// Returns the number of fractional bits.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert_eq!(Wrapping::<I16F16>::frac_nbits(), I16F16::frac_nbits());
/// ```
#[inline]
pub fn frac_nbits() -> u32 {
F::frac_nbits()
}
/// Creates a fixed-point number that has a bitwise representation
/// identical to the given integer.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert_eq!(Wrapping::<I16F16>::from_bits(0x1C), Wrapping(I16F16::from_bits(0x1C)));
/// ```
#[inline]
pub fn from_bits(bits: F::Bits) -> Wrapping<F> {
Wrapping(F::from_bits(bits))
}
/// Creates an integer that has a bitwise representation identical
/// to the given fixed-point number.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let w = Wrapping(I16F16::from_bits(0x1C));
/// assert_eq!(w.to_bits(), 0x1C);
/// ```
#[inline]
pub fn to_bits(self) -> F::Bits {
self.0.to_bits()
}
/// Wrapping conversion from another number.
///
/// The other number can be:
///
/// * A fixed-point number. Any extra fractional bits are truncated.
/// * An integer of type [`i8`], [`i16`], [`i32`], [`i64`], [`i128`],
/// [`isize`], [`u8`], [`u16`], [`u32`], [`u64`], [`u128`], or
/// [`usize`].
/// * A floating-point number of type [`f32`] or [`f64`]. If the
/// [`f16` feature] is enabled, it can also be of type [`f16`]
/// or [`bf16`]. For this conversion, the method rounds to the
/// nearest, with ties rounding to even.
/// * Any other number `src` for which [`ToFixed`] is implemented, in
/// which case this method returns
/// <code>[Wrapping][`Wrapping`]([src.wrapping_to_fixed()][`wrapping_to_fixed`])</code>.
///
/// # Panics
///
/// For floating-point numbers, panics if the value is not [finite].
///
/// # Examples
///
/// ```rust
/// use fixed::{
/// types::{I4F4, I16F16},
/// Wrapping,
/// };
///
/// // 0x1234.5678 wraps into 0x4.5
/// let src = I16F16::from_bits(0x1234_5678);
/// let dst = Wrapping::<I4F4>::from_num(src);
/// assert_eq!(dst, Wrapping(I4F4::from_bits(0x45)));
///
/// // 0x1234 wraps into 0x4.0
/// let src_int = 0x1234_i32;
/// let dst_int = Wrapping::<I4F4>::from_num(src_int);
/// assert_eq!(dst_int, Wrapping(I4F4::from_bits(0x40)));
///
/// // 129.75 wrapped into 1.75 (binary 1.1100)
/// let src_float = 129.75;
/// let dst_float = Wrapping::<I4F4>::from_num(src_float);
/// assert_eq!(dst_float, Wrapping(I4F4::from_bits(0b11100)));
/// ```
///
/// [`ToFixed`]: traits/trait.ToFixed.html
/// [`Wrapping`]: struct.Wrapping.html
/// [`bf16`]: https://docs.rs/half/^1.2/half/struct.bf16.html
/// [`f16` feature]: index.html#optional-features
/// [`f16`]: https://docs.rs/half/^1.2/half/struct.f16.html
/// [`f32`]: https://doc.rust-lang.org/nightly/std/primitive.f32.html
/// [`f64`]: https://doc.rust-lang.org/nightly/std/primitive.f64.html
/// [`i128`]: https://doc.rust-lang.org/nightly/std/primitive.i128.html
/// [`i16`]: https://doc.rust-lang.org/nightly/std/primitive.i16.html
/// [`i32`]: https://doc.rust-lang.org/nightly/std/primitive.i32.html
/// [`i64`]: https://doc.rust-lang.org/nightly/std/primitive.i64.html
/// [`i8`]: https://doc.rust-lang.org/nightly/std/primitive.i8.html
/// [`isize`]: https://doc.rust-lang.org/nightly/std/primitive.isize.html
/// [`wrapping_to_fixed`]: traits/trait.ToFixed.html#tymethod.wrapping_to_fixed
/// [`u128`]: https://doc.rust-lang.org/nightly/std/primitive.u128.html
/// [`u16`]: https://doc.rust-lang.org/nightly/std/primitive.u16.html
/// [`u32`]: https://doc.rust-lang.org/nightly/std/primitive.u32.html
/// [`u64`]: https://doc.rust-lang.org/nightly/std/primitive.u64.html
/// [`u8`]: https://doc.rust-lang.org/nightly/std/primitive.u8.html
/// [`usize`]: https://doc.rust-lang.org/nightly/std/primitive.usize.html
/// [finite]: https://doc.rust-lang.org/nightly/std/primitive.f64.html#method.is_finite
#[inline]
pub fn from_num<Src: ToFixed>(src: Src) -> Wrapping<F> {
Wrapping(src.wrapping_to_fixed())
}
/// Converts a fixed-point number to another number, wrapping the
/// value on overflow.
///
/// The other number can be:
///
/// * Another fixed-point number. Any extra fractional bits are truncated.
/// * An integer of type [`i8`], [`i16`], [`i32`], [`i64`], [`i128`],
/// [`isize`], [`u8`], [`u16`], [`u32`], [`u64`], [`u128`], or
/// [`usize`]. Any fractional bits are truncated.
/// * A floating-point number of type [`f32`] or [`f64`]. If the
/// [`f16` feature] is enabled, it can also be of type [`f16`]
/// or [`bf16`]. For this conversion, the method rounds to the
/// nearest, with ties rounding to even.
/// * Any other type `Dst` for which [`FromFixed`] is implemented, in
/// which case this method returns
/// [`Dst::wrapping_from_fixed(self.0)`][`wrapping_from_fixed`].
///
/// # Examples
///
/// ```rust
/// use fixed::{
/// types::{I16F16, I2F6, I4F4},
/// Wrapping,
/// };
///
/// // conversion that fits
/// let src = Wrapping(I4F4::from_num(1.75));
/// let expected = I16F16::from_num(1.75);
/// assert_eq!(src.to_num::<I16F16>(), expected);
///
/// // conversion that wraps
/// let src = Wrapping(I4F4::max_value());
/// let wrapped = I2F6::from_bits(I2F6::max_value().to_bits() << 2);
/// assert_eq!(src.to_num::<I2F6>(), wrapped);
/// ```
///
/// [`FromFixed`]: traits/trait.FromFixed.html
/// [`bf16`]: https://docs.rs/half/^1.2/half/struct.bf16.html
/// [`f16` feature]: index.html#optional-features
/// [`f16`]: https://docs.rs/half/^1.2/half/struct.f16.html
/// [`f32`]: https://doc.rust-lang.org/nightly/std/primitive.f32.html
/// [`f64`]: https://doc.rust-lang.org/nightly/std/primitive.f64.html
/// [`wrapping_from_fixed`]: traits/trait.FromFixed.html#tymethod.wrapping_from_fixed
/// [`i128`]: https://doc.rust-lang.org/nightly/std/primitive.i128.html
/// [`i16`]: https://doc.rust-lang.org/nightly/std/primitive.i16.html
/// [`i32`]: https://doc.rust-lang.org/nightly/std/primitive.i32.html
/// [`i64`]: https://doc.rust-lang.org/nightly/std/primitive.i64.html
/// [`i8`]: https://doc.rust-lang.org/nightly/std/primitive.i8.html
/// [`isize`]: https://doc.rust-lang.org/nightly/std/primitive.isize.html
/// [`u128`]: https://doc.rust-lang.org/nightly/std/primitive.u128.html
/// [`u16`]: https://doc.rust-lang.org/nightly/std/primitive.u16.html
/// [`u32`]: https://doc.rust-lang.org/nightly/std/primitive.u32.html
/// [`u64`]: https://doc.rust-lang.org/nightly/std/primitive.u64.html
/// [`u8`]: https://doc.rust-lang.org/nightly/std/primitive.u8.html
/// [`usize`]: https://doc.rust-lang.org/nightly/std/primitive.usize.html
#[inline]
pub fn to_num<Dst: FromFixed>(self) -> Dst {
Dst::wrapping_from_fixed(self.0)
}
/// Converts a string slice containing binary digits to a fixed-point number.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I8F8, Wrapping};
/// let check = Wrapping(I8F8::from_bits(0b1110001 << (8 - 1)));
/// assert_eq!(Wrapping::<I8F8>::from_str_binary("101100111000.1"), Ok(check));
/// ```
#[inline]
pub fn from_str_binary(src: &str) -> Result<Wrapping<F>, ParseFixedError> {
F::wrapping_from_str_binary(src).map(Wrapping)
}
/// Converts a string slice containing octal digits to a fixed-point number.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I8F8, Wrapping};
/// let check = Wrapping(I8F8::from_bits(0o1654 << (8 - 3)));
/// assert_eq!(Wrapping::<I8F8>::from_str_octal("7165.4"), Ok(check));
/// ```
#[inline]
pub fn from_str_octal(src: &str) -> Result<Wrapping<F>, ParseFixedError> {
F::wrapping_from_str_octal(src).map(Wrapping)
}
/// Converts a string slice containing hexadecimal digits to a fixed-point number.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I8F8, Wrapping};
/// let check = Wrapping(I8F8::from_bits(0xFFE));
/// assert_eq!(Wrapping::<I8F8>::from_str_hex("C0F.FE"), Ok(check));
/// ```
#[inline]
pub fn from_str_hex(src: &str) -> Result<Wrapping<F>, ParseFixedError> {
F::wrapping_from_str_hex(src).map(Wrapping)
}
/// Returns the integer part.
///
/// Note that since the numbers are stored in two’s complement,
/// negative numbers with non-zero fractional parts will be
/// rounded towards −∞, except in the case where there are no
/// integer bits, for example for the type
/// <code>[Wrapping][`Wrapping`]<[I0F16][`I0F16`]></code>,
/// where the return value is always zero.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert_eq!(Wrapping(I16F16::from_num(12.25)).int(), Wrapping(I16F16::from_num(12)));
/// assert_eq!(Wrapping(I16F16::from_num(-12.25)).int(), Wrapping(I16F16::from_num(-13)));
/// ```
///
/// [`I0F16`]: types/type.I0F16.html
/// [`Wrapping`]: struct.Wrapping.html
#[inline]
pub fn int(self) -> Wrapping<F> {
Wrapping(self.0.int())
}
/// Returns the fractional part.
///
/// Note that since the numbers are stored in two’s complement,
/// the returned fraction will be non-negative for negative
/// numbers, except in the case where there are no integer bits,
/// for example for the type
/// <code>[Wrapping][`Wrapping`]<[I0F16][`I0F16`]></code>,
/// where the return value is always equal to `self`.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert_eq!(Wrapping(I16F16::from_num(12.25)).frac(), Wrapping(I16F16::from_num(0.25)));
/// assert_eq!(Wrapping(I16F16::from_num(-12.25)).frac(), Wrapping(I16F16::from_num(0.75)));
/// ```
///
/// [`I0F16`]: types/type.I0F16.html
/// [`Wrapping`]: struct.Wrapping.html
#[inline]
pub fn frac(self) -> Wrapping<F> {
Wrapping(self.0.frac())
}
/// Rounds to the next integer towards 0.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let three = Wrapping(I16F16::from_num(3));
/// assert_eq!(Wrapping(I16F16::from_num(3.9)).round_to_zero(), three);
/// assert_eq!(Wrapping(I16F16::from_num(-3.9)).round_to_zero(), -three);
/// ```
#[inline]
pub fn round_to_zero(self) -> Wrapping<F> {
Wrapping(self.0.round_to_zero())
}
/// Wrapping ceil. Rounds to the next integer towards +∞, wrapping
/// on overflow.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let two_half = Wrapping(I16F16::from_num(5) / 2);
/// assert_eq!(two_half.ceil(), Wrapping(I16F16::from_num(3)));
/// assert_eq!(Wrapping(I16F16::max_value()).ceil(), Wrapping(I16F16::min_value()));
/// ```
#[inline]
pub fn ceil(self) -> Wrapping<F> {
Wrapping(self.0.wrapping_ceil())
}
/// Wrapping floor. Rounds to the next integer towards −∞,
/// wrapping on overflow.
///
/// Overflow can only occur for signed numbers with zero integer
/// bits.
///
/// # Examples
///
/// ```rust
/// use fixed::{
/// types::{I0F32, I16F16},
/// Wrapping,
/// };
/// let two_half = Wrapping(I16F16::from_num(5) / 2);
/// assert_eq!(two_half.floor(), Wrapping(I16F16::from_num(2)));
/// assert_eq!(Wrapping(I0F32::min_value()).floor(), Wrapping(I0F32::from_num(0)));
/// ```
#[inline]
pub fn floor(self) -> Wrapping<F> {
Wrapping(self.0.wrapping_floor())
}
/// Wrapping round. Rounds to the next integer to the nearest,
/// with ties rounded away from zero, and wrapping on overflow.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let two_half = Wrapping(I16F16::from_num(5) / 2);
/// assert_eq!(two_half.round(), Wrapping(I16F16::from_num(3)));
/// assert_eq!((-two_half).round(), Wrapping(I16F16::from_num(-3)));
/// assert_eq!(Wrapping(I16F16::max_value()).round(), Wrapping(I16F16::min_value()));
/// ```
#[inline]
pub fn round(self) -> Wrapping<F> {
Wrapping(self.0.wrapping_round())
}
/// Wrapping round. Rounds to the next integer to the nearest,
/// with ties rounded to even, and wrapping on overflow.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let two_half = Wrapping(I16F16::from_num(2.5));
/// assert_eq!(two_half.round_ties_to_even(), Wrapping(I16F16::from_num(2)));
/// let three_half = Wrapping(I16F16::from_num(3.5));
/// assert_eq!(three_half.round_ties_to_even(), Wrapping(I16F16::from_num(4)));
/// let max = Wrapping(I16F16::max_value());
/// assert_eq!(max.round_ties_to_even(), Wrapping(I16F16::min_value()));
/// ```
#[inline]
pub fn round_ties_to_even(self) -> Wrapping<F> {
Wrapping(self.0.wrapping_round_ties_to_even())
}
/// Returns the number of ones in the binary representation.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let w = Wrapping(I16F16::from_bits(0x00FF_FF00));
/// assert_eq!(w.count_ones(), w.0.count_ones());
/// ```
#[inline]
pub fn count_ones(self) -> u32 {
self.0.count_ones()
}
/// Returns the number of zeros in the binary representation.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let w = Wrapping(I16F16::from_bits(0x00FF_FF00));
/// assert_eq!(w.count_zeros(), w.0.count_zeros());
/// ```
#[inline]
pub fn count_zeros(self) -> u32 {
self.0.count_zeros()
}
/// Returns the number of leading zeros in the binary representation.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let w = Wrapping(I16F16::from_bits(0x00FF_FF00));
/// assert_eq!(w.leading_zeros(), w.0.leading_zeros());
/// ```
#[inline]
pub fn leading_zeros(self) -> u32 {
self.0.leading_zeros()
}
/// Returns the number of trailing zeros in the binary representation.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let w = Wrapping(I16F16::from_bits(0x00FF_FF00));
/// assert_eq!(w.trailing_zeros(), w.0.trailing_zeros());
/// ```
#[inline]
pub fn trailing_zeros(self) -> u32 {
self.0.trailing_zeros()
}
/// Shifts to the left by `n` bits, wrapping the truncated bits to the right end.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let i = I16F16::from_bits(0x00FF_FF00);
/// assert_eq!(Wrapping(i).rotate_left(12), Wrapping(i.rotate_left(12)));
/// ```
#[inline]
pub fn rotate_left(self, n: u32) -> Wrapping<F> {
Wrapping(self.0.rotate_left(n))
}
/// Shifts to the right by `n` bits, wrapping the truncated bits to the left end.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let i = I16F16::from_bits(0x00FF_FF00);
/// assert_eq!(Wrapping(i).rotate_right(12), Wrapping(i.rotate_right(12)));
/// ```
#[inline]
pub fn rotate_right(self, n: u32) -> Wrapping<F> {
Wrapping(self.0.rotate_right(n))
}
/// Euclidean division.
///
/// # Panics
///
/// Panics if the divisor is zero.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let num = Wrapping(I16F16::from_num(7.5));
/// let den = Wrapping(I16F16::from_num(2));
/// assert_eq!(num.div_euclid(den), Wrapping(I16F16::from_num(3)));
/// let quarter = Wrapping(I16F16::from_num(0.25));
/// let check = (Wrapping::max_value() * 4i32).round_to_zero();
/// assert_eq!(Wrapping::max_value().div_euclid(quarter), check);
/// ```
#[inline]
pub fn div_euclid(self, divisor: Wrapping<F>) -> Wrapping<F> {
Wrapping(self.0.wrapping_div_euclid(divisor.0))
}
/// Remainder for Euclidean division.
///
/// # Panics
///
/// Panics if the divisor is zero.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let num = Wrapping(I16F16::from_num(7.5));
/// let den = Wrapping(I16F16::from_num(2));
/// assert_eq!(num.rem_euclid(den), Wrapping(I16F16::from_num(1.5)));
/// assert_eq!((-num).rem_euclid(den), Wrapping(I16F16::from_num(0.5)));
/// ```
#[inline]
pub fn rem_euclid(self, divisor: Wrapping<F>) -> Wrapping<F> {
Wrapping(self.0.rem_euclid(divisor.0))
}
/// Euclidean division by an integer.
///
/// # Panics
///
/// Panics if the divisor is zero.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let num = Wrapping(I16F16::from_num(7.5));
/// assert_eq!(num.div_euclid_int(2), Wrapping(I16F16::from_num(3)));
/// let min = Wrapping(I16F16::min_value());
/// assert_eq!(min.div_euclid_int(-1), min);
/// ```
#[inline]
pub fn div_euclid_int(self, divisor: F::Bits) -> Wrapping<F> {
Wrapping(self.0.wrapping_div_euclid_int(divisor))
}
/// Remainder for Euclidean division.
///
/// # Panics
///
/// Panics if the divisor is zero.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// let num = Wrapping(I16F16::from_num(7.5));
/// assert_eq!(num.rem_euclid_int(2), Wrapping(I16F16::from_num(1.5)));
/// assert_eq!((-num).rem_euclid_int(2), Wrapping(I16F16::from_num(0.5)));
/// ```
#[inline]
pub fn rem_euclid_int(self, divisor: F::Bits) -> Wrapping<F> {
Wrapping(self.0.rem_euclid_int(divisor))
}
}
impl<F: FixedSigned> Wrapping<F> {
/// Returns [`true`][`bool`] if the number is > 0.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert!(Wrapping(I16F16::from_num(4.3)).is_positive());
/// assert!(!Wrapping(I16F16::from_num(0)).is_positive());
/// assert!(!Wrapping(I16F16::from_num(-4.3)).is_positive());
/// ```
///
/// [`bool`]: https://doc.rust-lang.org/nightly/std/primitive.bool.html
#[inline]
pub fn is_positive(self) -> bool {
self.0.is_positive()
}
/// Returns [`true`][`bool`] if the number is < 0.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert!(!Wrapping(I16F16::from_num(4.3)).is_negative());
/// assert!(!Wrapping(I16F16::from_num(0)).is_negative());
/// assert!(Wrapping(I16F16::from_num(-4.3)).is_negative());
/// ```
///
/// [`bool`]: https://doc.rust-lang.org/nightly/std/primitive.bool.html
#[inline]
pub fn is_negative(self) -> bool {
self.0.is_negative()
}
/// Wrapping absolute value. Returns the absolute value, wrapping
/// on overflow.
///
/// Overflow can only occur when trying to find the absolute value
/// of the minimum value.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert_eq!(Wrapping(I16F16::from_num(-5)).abs(), Wrapping(I16F16::from_num(5)));
/// assert_eq!(Wrapping(I16F16::min_value()).abs(), Wrapping(I16F16::min_value()));
/// ```
#[inline]
pub fn abs(self) -> Wrapping<F> {
Wrapping(self.0.wrapping_abs())
}
/// Returns a number representing the sign of `self`.
///
/// # Warning
///
/// Using this method when 1 and −1 cannot be represented is
/// almost certainly a bug, however, this is allowed and gives the
/// following wrapped results.
///
/// * When there are no integer bits, for example for the type
/// <code>[Wrapping][`Wrapping`]<[I0F16][`I0F16`]></code>,
/// the return value is always zero.
/// * When there is one integer bit, for example for the type
/// <code>[Wrapping][`Wrapping`]<[I1F15][`I1F15`]></code>,
/// the return value is zero when `self` is zero, and −1
/// otherwise. This means that for a positive number, −1 is
/// returned, because +1 does not fit and is wrapped to −1.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::I16F16, Wrapping};
/// assert_eq!(Wrapping(<I16F16>::from_num(-3.9)).signum(), Wrapping(I16F16::from_num(-1)));
/// assert_eq!(Wrapping(<I16F16>::from_num(0)).signum(), Wrapping(I16F16::from_num(0)));
/// assert_eq!(Wrapping(<I16F16>::from_num(3.9)).signum(), Wrapping(I16F16::from_num(1)));
/// ```
///
/// [`I0F16`]: types/type.I0F16.html
/// [`I1F15`]: types/type.I1F15.html
/// [`Wrapping`]: struct.Wrapping.html
#[inline]
pub fn signum(self) -> Wrapping<F> {
if self.is_positive() {
Self::from_num(1)
} else if self.is_negative() {
Self::from_num(-1)
} else {
Self::from_num(0)
}
}
}
impl<F: FixedUnsigned> Wrapping<F> {
/// Returns [`true`][`bool`] if the fixed-point number is
/// 2<sup><i>k</i></sup> for some integer <i>k</i>.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::U16F16, Wrapping};
/// assert!(Wrapping(U16F16::from_num(0.5)).is_power_of_two());
/// assert!(Wrapping(U16F16::from_num(4)).is_power_of_two());
/// assert!(!Wrapping(U16F16::from_num(5)).is_power_of_two());
/// ```
///
/// [`bool`]: https://doc.rust-lang.org/nightly/std/primitive.bool.html
#[inline]
pub fn is_power_of_two(self) -> bool {
self.0.is_power_of_two()
}
/// Returns the smallest power of two that is ≥ `self`.
///
/// If the next power of two is too large to fit, it is wrapped to zero.
///
/// # Examples
///
/// ```rust
/// use fixed::{types::U16F16, Wrapping};
/// let half = Wrapping(U16F16::from_num(0.5));
/// assert_eq!(Wrapping(U16F16::from_num(0.3)).next_power_of_two(), half);
/// let four = Wrapping(U16F16::from_num(4));
/// assert_eq!(Wrapping(U16F16::from_num(4)).next_power_of_two(), four);
/// let zero = Wrapping(U16F16::from_num(0));
/// assert_eq!(Wrapping(U16F16::max_value()).next_power_of_two(), zero);
/// ```
#[inline]
pub fn next_power_of_two(self) -> Wrapping<F> {
Wrapping(self.0.checked_next_power_of_two().unwrap_or_default())
}
}
impl<F: Fixed> Display for Wrapping<F> {
#[inline]
fn fmt(&self, f: &mut Formatter) -> FmtResult {
Display::fmt(&self.0, f)
}
}
impl<F: Fixed> From<F> for Wrapping<F> {
#[inline]
fn from(src: F) -> Wrapping<F> {
Wrapping(src)
}
}
impl<F: Fixed> FromStr for Wrapping<F> {
type Err = ParseFixedError;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
F::wrapping_from_str(s).map(Wrapping)
}
}
macro_rules! op {
($wrapping:ident, $Op:ident $op:ident, $OpAssign:ident $op_assign:ident) => {
impl<F: Fixed> $Op<Wrapping<F>> for Wrapping<F> {
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: Wrapping<F>) -> Wrapping<F> {
Wrapping((self.0).$wrapping(other.0))
}
}
impl<'a, F: Fixed> $Op<Wrapping<F>> for &'a Wrapping<F> {
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: Wrapping<F>) -> Wrapping<F> {
Wrapping((self.0).$wrapping(other.0))
}
}
impl<'a, F: Fixed> $Op<&'a Wrapping<F>> for Wrapping<F> {
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: &Wrapping<F>) -> Wrapping<F> {
Wrapping((self.0).$wrapping(other.0))
}
}
impl<'a, 'b, F: Fixed> $Op<&'a Wrapping<F>> for &'b Wrapping<F> {
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: &Wrapping<F>) -> Wrapping<F> {
Wrapping((self.0).$wrapping(other.0))
}
}
impl<F: Fixed> $OpAssign<Wrapping<F>> for Wrapping<F> {
#[inline]
fn $op_assign(&mut self, other: Wrapping<F>) {
self.0 = (self.0).$wrapping(other.0);
}
}
impl<'a, F: Fixed> $OpAssign<&'a Wrapping<F>> for Wrapping<F> {
#[inline]
fn $op_assign(&mut self, other: &Wrapping<F>) {
self.0 = (self.0).$wrapping(other.0);
}
}
};
}
macro_rules! op_bitwise {
($Op:ident $op:ident, $OpAssign:ident $op_assign:ident) => {
impl<F> $Op<Wrapping<F>> for Wrapping<F>
where
F: $Op<F, Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: Wrapping<F>) -> Wrapping<F> {
Wrapping((self.0).$op(other.0))
}
}
impl<'a, F> $Op<Wrapping<F>> for &'a Wrapping<F>
where
&'a F: $Op<F, Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: Wrapping<F>) -> Wrapping<F> {
Wrapping((self.0).$op(other.0))
}
}
impl<'a, F> $Op<&'a Wrapping<F>> for Wrapping<F>
where
F: $Op<&'a F, Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: &'a Wrapping<F>) -> Wrapping<F> {
Wrapping((self.0).$op(&other.0))
}
}
impl<'a, 'b, F> $Op<&'a Wrapping<F>> for &'b Wrapping<F>
where
&'b F: $Op<&'a F, Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: &'a Wrapping<F>) -> Wrapping<F> {
Wrapping((self.0).$op(&other.0))
}
}
impl<F> $OpAssign<Wrapping<F>> for Wrapping<F>
where
F: $OpAssign<F>,
{
#[inline]
fn $op_assign(&mut self, other: Wrapping<F>) {
(self.0).$op_assign(other.0);
}
}
impl<'a, F> $OpAssign<&'a Wrapping<F>> for Wrapping<F>
where
F: $OpAssign<&'a F>,
{
#[inline]
fn $op_assign(&mut self, other: &'a Wrapping<F>) {
(self.0).$op_assign(&other.0);
}
}
};
}
macro_rules! op_shift {
(
$Op:ident $op:ident, $OpAssign:ident $op_assign:ident;
$($Rhs:ident),*
) => { $(
impl<F> $Op<$Rhs> for Wrapping<F>
where
F: $Op<u32, Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: $Rhs) -> Wrapping<F> {
let nbits = mem::size_of::<F>() as u32 * 8;
Wrapping((self.0).$op(other as u32 % nbits))
}
}
impl<'a, F> $Op<$Rhs> for &'a Wrapping<F>
where
&'a F: $Op<u32, Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: $Rhs) -> Wrapping<F> {
let nbits = mem::size_of::<F>() as u32 * 8;
Wrapping((self.0).$op(other as u32 % nbits))
}
}
impl<'a, F> $Op<&'a $Rhs> for Wrapping<F>
where
F: $Op<u32, Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: &$Rhs) -> Wrapping<F> {
let nbits = mem::size_of::<F>() as u32 * 8;
Wrapping((self.0).$op(*other as u32 % nbits))
}
}
impl<'a, 'b, F> $Op<&'a $Rhs> for &'b Wrapping<F>
where
&'b F: $Op<u32, Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn $op(self, other: &$Rhs) -> Wrapping<F> {
let nbits = mem::size_of::<F>() as u32 * 8;
Wrapping((self.0).$op(*other as u32 % nbits))
}
}
impl<F> $OpAssign<$Rhs> for Wrapping<F>
where
F: $OpAssign<u32>,
{
#[inline]
fn $op_assign(&mut self, other: $Rhs) {
let nbits = mem::size_of::<F>() as u32 * 8;
(self.0).$op_assign(other as u32 % nbits);
}
}
impl<'a, F> $OpAssign<&'a $Rhs> for Wrapping<F>
where
F: $OpAssign<u32>,
{
#[inline]
fn $op_assign(&mut self, other: &$Rhs) {
let nbits = mem::size_of::<F>() as u32 * 8;
(self.0).$op_assign(*other as u32 % nbits);
}
}
)* };
}
impl<F: Fixed> Neg for Wrapping<F> {
type Output = Wrapping<F>;
#[inline]
fn neg(self) -> Wrapping<F> {
Wrapping((self.0).wrapping_neg())
}
}
impl<'a, F: Fixed> Neg for &'a Wrapping<F> {
type Output = Wrapping<F>;
#[inline]
fn neg(self) -> Wrapping<F> {
Wrapping((self.0).wrapping_neg())
}
}
op! { wrapping_add, Add add, AddAssign add_assign }
op! { wrapping_sub, Sub sub, SubAssign sub_assign }
op! { wrapping_mul, Mul mul, MulAssign mul_assign }
op! { wrapping_div, Div div, DivAssign div_assign }
op! { rem, Rem rem, RemAssign rem_assign }
impl<F> Not for Wrapping<F>
where
F: Not<Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn not(self) -> Wrapping<F> {
Wrapping((self.0).not())
}
}
impl<'a, F> Not for &'a Wrapping<F>
where
&'a F: Not<Output = F>,
{
type Output = Wrapping<F>;
#[inline]
fn not(self) -> Wrapping<F> {
Wrapping((self.0).not())
}
}
op_bitwise! { BitAnd bitand, BitAndAssign bitand_assign }
op_bitwise! { BitOr bitor, BitOrAssign bitor_assign }
op_bitwise! { BitXor bitxor, BitXorAssign bitxor_assign }
op_shift! {
Shl shl, ShlAssign shl_assign;
i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize
}
op_shift! {
Shr shr, ShrAssign shr_assign;
i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize
}
impl<F: Fixed> Sum<Wrapping<F>> for Wrapping<F> {
fn sum<I>(iter: I) -> Wrapping<F>
where
I: Iterator<Item = Wrapping<F>>,
{
iter.fold(Wrapping(F::from_num(0)), Add::add)
}
}
impl<'a, F: 'a + Fixed> Sum<&'a Wrapping<F>> for Wrapping<F> {
fn sum<I>(iter: I) -> Wrapping<F>
where
I: Iterator<Item = &'a Wrapping<F>>,
{
iter.fold(Wrapping(F::from_num(0)), Add::add)
}
}
impl<F: Fixed> Product<Wrapping<F>> for Wrapping<F> {
fn product<I>(mut iter: I) -> Wrapping<F>
where
I: Iterator<Item = Wrapping<F>>,
{
match iter.next() {
None => Wrapping(1.wrapping_to_fixed()),
Some(first) => iter.fold(first, Mul::mul),
}
}
}
impl<'a, F: 'a + Fixed> Product<&'a Wrapping<F>> for Wrapping<F> {
fn product<I>(mut iter: I) -> Wrapping<F>
where
I: Iterator<Item = &'a Wrapping<F>>,
{
match iter.next() {
None => Wrapping(1.wrapping_to_fixed()),
Some(first) => iter.fold(*first, Mul::mul),
}
}
}
// The following cannot be implemented for Wrapping<F> where F: Fixed,
// otherwise there will be a conflicting implementation error. For
// example we cannot implement both these without triggering E0119:
//
// impl<F: Fixed> Op<F::Bits> for Wrapping<F> { /* ... */ }
// impl<'a, F: Fixed> Op<&'a F::Bits> for Wrapping<F> { /* ... */ }
//
// To work around this, we provide implementations like this:
//
// impl<Frac> Op<i8> for Wrapping<FixedI8<Frac>> { /* ... */ }
// impl<'a, Frac> Op<&'a i8> for Wrapping<FixedI8<Frac>> { /* ... */ }
// impl<Frac> Op<i16> for Wrapping<FixedI16<Frac>> { /* ... */ }
// impl<'a, Frac> Op<&'a i16> for Wrapping<FixedI16<Frac>> { /* ... */ }
// ...
macro_rules! op_bits {
(
$Fixed:ident($Bits:ident $(, $LeEqU:ident)*)::$wrapping:ident,
$Op:ident $op:ident,
$OpAssign:ident $op_assign:ident
) => {
impl<Frac $(: $LeEqU)*> $Op<$Bits> for Wrapping<$Fixed<Frac>> {
type Output = Wrapping<$Fixed<Frac>>;
#[inline]
fn $op(self, other: $Bits) -> Wrapping<$Fixed<Frac>> {
Wrapping((self.0).$wrapping(other))
}
}
impl<'a, Frac $(: $LeEqU)*> $Op<$Bits> for &'a Wrapping<$Fixed<Frac>> {
type Output = Wrapping<$Fixed<Frac>>;
#[inline]
fn $op(self, other: $Bits) -> Wrapping<$Fixed<Frac>> {
Wrapping((self.0).$wrapping(other))
}
}
impl<'a, Frac $(: $LeEqU)*> $Op<&'a $Bits> for Wrapping<$Fixed<Frac>> {
type Output = Wrapping<$Fixed<Frac>>;
#[inline]
fn $op(self, other: &$Bits) -> Wrapping<$Fixed<Frac>> {
Wrapping((self.0).$wrapping(*other))
}
}
impl<'a, 'b, Frac $(: $LeEqU)*> $Op<&'a $Bits> for &'b Wrapping<$Fixed<Frac>> {
type Output = Wrapping<$Fixed<Frac>>;
#[inline]
fn $op(self, other: &$Bits) -> Wrapping<$Fixed<Frac>> {
Wrapping((self.0).$wrapping(*other))
}
}
impl<Frac $(: $LeEqU)*> $OpAssign<$Bits> for Wrapping<$Fixed<Frac>> {
#[inline]
fn $op_assign(&mut self, other: $Bits) {
self.0 = (self.0).$wrapping(other);
}
}
impl<'a, Frac $(: $LeEqU)*> $OpAssign<&'a $Bits> for Wrapping<$Fixed<Frac>> {
#[inline]
fn $op_assign(&mut self, other: &$Bits) {
self.0 = (self.0).$wrapping(*other);
}
}
};
}
macro_rules! ops {
($Fixed:ident($Bits:ident, $LeEqU:ident)) => {
op_bits! { $Fixed($Bits)::wrapping_mul_int, Mul mul, MulAssign mul_assign }
op_bits! { $Fixed($Bits)::wrapping_div_int, Div div, DivAssign div_assign }
op_bits! { $Fixed($Bits, $LeEqU)::rem, Rem rem, RemAssign rem_assign }
};
}
ops! { FixedI8(i8, LeEqU8) }
ops! { FixedI16(i16, LeEqU16) }
ops! { FixedI32(i32, LeEqU32) }
ops! { FixedI64(i64, LeEqU64) }
ops! { FixedI128(i128, LeEqU128) }
ops! { FixedU8(u8, LeEqU8) }
ops! { FixedU16(u16, LeEqU16) }
ops! { FixedU32(u32, LeEqU32) }
ops! { FixedU64(u64, LeEqU64) }
ops! { FixedU128(u128, LeEqU128) }