firestore 0.47.1

Library provides a simple API for Google Firestore and own Serde serializer based on efficient gRPC API
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
[![Cargo](https://img.shields.io/crates/v/firestore.svg)](https://crates.io/crates/firestore)
![tests and formatting](https://github.com/abdolence/firestore-rs/workflows/tests%20&%20formatting/badge.svg)
![security audit](https://github.com/abdolence/firestore-rs/workflows/security%20audit/badge.svg)

# Firestore for Rust

Library provides a simple API for Google Firestore based on the official gRPC API:

- Create or update documents using Rust structures and Serde;
- Support for:
    - Querying/streaming docs/objects;
    - Listing documents/objects (and auto pages scrolling support);
    - Listening changes from Firestore;
    - Transactions;
    - Aggregated Queries;
    - Streaming batch writes with automatic throttling to avoid time limits from Firestore;
    - K-nearest neighbor (KNN) vector search;
    - Explaining queries;
- Fluent high-level and strongly typed API;
- Full async based on Tokio runtime;
- Macro that helps you use JSON paths as references to your structure fields;
- Implements own Serde serializer to Firestore protobuf values;
- Support for multiple database IDs
- Supports for extended datatypes:
    - Firestore timestamp with `#[serde(with)]` and a specialized structure
    - Lat/Lng
    - References
- Caching support for collections and documents:
    - In-memory cache;
    - Persistent cache;
- Google client based on [gcloud-sdk library]https://github.com/abdolence/gcloud-sdk-rs
  that automatically detects GCE environment or application default accounts for local development;

## Quick start

Cargo.toml:

```toml
[dependencies]
firestore = "0.47"
```

### Crypto provider error

Depends on your other dependencies you may see the error like:

```
no process-level CryptoProvider available -- call CryptoProvider::install_default() before this point 
```

This is because the TLS providers are not installed by default and you can choose different.
The easiest way to fix is just to include one of the provider, for example:

```toml
[dependencies]
rustls = "0.23"
```

If you have multiple you may need to call `CryptoProvider::install_default()` before using the Firestore client, e.g.:

```rust
rustls::crypto::ring::default_provider().install_default().expect("Failed to install rustls crypto provider");
```


## Examples

All examples available in the [examples](examples) directory.

To run an example with environment variables:

```
PROJECT_ID=<your-google-project-id> cargo run --example crud
```

## Firestore database client instance and lifecycle

To create a new instance of Firestore client you need to provide at least a GCP project ID.
It is not recommended creating a new client for each request, so it is recommended to create a client once and reuse it
whenever possible.
Cloning instances is much cheaper than creating a new one.

The client is created using the `Firestore::new` method:

```rust
use firestore::*;

// Create an instance
let db = FirestoreDb::new( & config_env_var("PROJECT_ID") ? ).await?;
```

This is the recommended way to create a new instance of the client, since it
automatically detects the environment and uses credentials, service accounts, Workload Identity on GCP, etc.
Look at the section below [Google authentication](#google-authentication) for more details.

In cases if you need to create a new instance explicitly specifying a key file, you can use:

```rust
FirestoreDb::with_options_service_account_key_file(
  FirestoreDbOptions::new(config_env_var("PROJECT_ID") ?.to_string()),
  "/tmp/key.json".into()
).await?
```

or if you need even more flexibility you can use a preconfigured token source and scopes with:

```rust
FirestoreDb::with_options_token_source(
  FirestoreDbOptions::new(config_env_var("PROJECT_ID") ?.to_string()),
  gcloud_sdk::GCP_DEFAULT_SCOPES.clone(),
  gcloud_sdk::TokenSourceType::File("/tmp/key.json".into())
).await?
```

Firebase supports [multiple databases per project now](https://cloud.google.com/firestore/docs/manage-databases),
so you can specify the database ID in the options:

```rust
FirestoreDb::with_options(
  FirestoreDbOptions::new("your-project-id".to_string())
    .with_database_id("your-database-id".to_string())
  )
.await?
```

## Fluent API

The library provides two APIs:

- Fluent API: To simplify development and developer experience the library provides more high level API starting with
  v0.12.x. This is the recommended API for all applications to use.
- Classic and low level API: the API existing before 0.12 is still available and not deprecated, so it is fine to
  continue to use when needed. Furthermore the Fluent API is based on the same classic API and generally speaking are
  something like smart and convenient constructors. The API can be changed with introducing incompatible changes so it
  is not recommended to use in long term.

```rust
use firestore::*;

const TEST_COLLECTION_NAME: &'static str = "test";

let my_struct = MyTestStructure {
  some_id: "test-1".to_string(),
  some_string: "Test".to_string(),
  one_more_string: "Test2".to_string(),
  some_num: 42,
};

// Create
let object_returned: MyTestStructure = db.fluent()
  .insert()
  .into(TEST_COLLECTION_NAME)
  .document_id( & my_struct.some_id)
  .object( & my_struct)
  .execute()
  .await?;

// Update or Create 
// (Firestore supports creating documents with update if you provide the document ID).
let object_updated: MyTestStructure = db.fluent()
  .update()
  .fields(paths!(MyTestStructure::{some_num, one_more_string}))
  .in_col(TEST_COLLECTION_NAME)
  .document_id( & my_struct.some_id)
  .object( & MyTestStructure {
      some_num: my_struct.some_num + 1,
      one_more_string: "updated-value".to_string(),
        ..my_struct.clone()
   })
  .execute()
  .await?;

// Get object by id
let find_it_again: Option<MyTestStructure> = db.fluent()
  .select()
  .by_id_in(TEST_COLLECTION_NAME)
  .obj()
  .one( & my_struct.some_id)
  .await?;

// Delete data
db.fluent()
  .delete()
  .from(TEST_COLLECTION_NAME)
  .document_id( & my_struct.some_id)
  .execute()
  .await?;

```

## Querying

The library supports rich querying API with filters, ordering, pagination, etc.

```rust
// Query as a stream our data
let object_stream: BoxStream<FirestoreResult<MyTestStructure> > = db.fluent()
  .select()
  .fields(paths!(MyTestStructure::{some_id, some_num, some_string, one_more_string, created_at})) // Optionally select the fields needed
  .from(TEST_COLLECTION_NAME)
  .filter( | q| { // Fluent filter API example
      q.for_all([
        q.field(path!(MyTestStructure::some_num)).is_not_null(),
        q.field(path!(MyTestStructure::some_string)).eq("Test"),
        // Sometimes you have optional filters
        Some("Test2")
          .and_then( | value | q.field(path ! (MyTestStructure::one_more_string)).eq(value)),        
      ])
  })
  .order_by([(
    path!(MyTestStructure::some_num),
    FirestoreQueryDirection::Descending,
  )])
  .obj() // Reading documents as structures using Serde gRPC deserializer
  .stream_query_with_errors()
  .await?;

let as_vec: Vec<MyTestStructure> = object_stream.try_collect().await?;
println!("{:?}", as_vec);
```

Use:

- `q.for_all` for AND conditions
- `q.for_any` for OR conditions (Firestore has just recently added support for OR conditions)

You can nest `q.for_all`/`q.for_any`.

## Get and batch get support

```rust

let find_it_again: Option<MyTestStructure> = db.fluent()
  .select()
  .by_id_in(TEST_COLLECTION_NAME)
  .obj()
  .one( & my_struct.some_id)
  .await?;

let object_stream: BoxStream<(String, Option<MyTestStructure>) > = db.fluent()
  .select()
  .by_id_in(TEST_COLLECTION_NAME)
  .obj()
  .batch(vec!["test-0", "test-5"])
  .await?;
```

## Timestamps support

By default, the types such as DateTime<Utc> serializes as a string
to Firestore (while deserialization works from Timestamps and Strings).

To change this behaviour and support Firestore timestamps on database level there are two options:

- `#[serde(with)]` and attributes:

```rust
#[derive(Debug, Clone, Deserialize, Serialize)]
struct MyTestStructure {
    #[serde(with = "firestore::serialize_as_timestamp")]
    created_at: DateTime<Utc>,

    #[serde(default)]
    #[serde(with = "firestore::serialize_as_optional_timestamp")]
    updated_at: Option<DateTime<Utc>>,
}
```

- using a type `FirestoreTimestamp`:

```rust
#[derive(Debug, Clone, Deserialize, Serialize)]
struct MyTestStructure {
    created_at: firestore::FirestoreTimestamp,
    updated_at: Option<firestore::FirestoreTimestamp>
}
```

This will change it only for firestore serialization, but it still serializes as string
to JSON (so you can reuse the same model for JSON and Firestore).

In your queries you need to use the wrapping class `firestore::FirestoreTimestamp`, for example:

```rust
   q.field(path!(MyTestStructure::created_at)).less_than_or_equal(firestore::FirestoreTimestamp(Utc::now()))
```

## Nested collections

You can work with nested collections specifying path/location to a parent for documents:

```rust

// Creating a parent doc
db.fluent()
  .insert()
  .into(TEST_PARENT_COLLECTION_NAME)
  .document_id(&parent_struct.some_id)
  .object(&parent_struct)
  .execute()
  .await?;

// The doc path where we store our children
let parent_path = db.parent_path(TEST_PARENT_COLLECTION_NAME, parent_struct.some_id)?;

// Create a child doc
db.fluent()
  .insert()
  .into(TEST_CHILD_COLLECTION_NAME)
  .document_id(&child_struct.some_id)
  .parent(&parent_path)
  .object(&child_struct)
  .execute()
  .await?;

// Listing children
println!("Listing all children");

let objs_stream: BoxStream<MyChildStructure> = db.fluent()
  .list()
  .from(TEST_CHILD_COLLECTION_NAME)
  .parent( & parent_path)
  .obj()
  .stream_all()
  .await?;

```

Complete example available [here](examples/nested_collections.rs).

You can nest multiple levels of collections using `at()`:

```rust
let parent_path =
db.parent_path(TEST_PARENT_COLLECTION_NAME, "parent-id")?
  .at(TEST_CHILD_COLLECTION_NAME, "child-id")?
  .at(TEST_GRANDCHILD_COLLECTION_NAME, "grand-child-id")?;
```

## Transactions

To manage transactions manually you can use `db.begin_transaction()`, and
then the Fluent API to add the operations needed in the transaction.

```rust
let mut transaction = db.begin_transaction().await?;

db.fluent()
  .update()
  .fields(paths!(MyTestStructure::{
       some_string
     }))
  .in_col(TEST_COLLECTION_NAME)
  .document_id("test-0")
  .object( & MyTestStructure {
    some_id: format!("test-0"),
    some_string: "UpdatedTest".to_string(),
  })
  .add_to_transaction( & mut transaction) ?;

db.fluent()
  .delete()
  .from(TEST_COLLECTION_NAME)
  .document_id("test-5")
  .add_to_transaction( & mut transaction) ?;

transaction.commit().await?;
```

You may also execute transactions that automatically retry with exponential backoff using `run_transaction`.

```rust
    db.run_transaction( | db, transaction| {
      Box::pin(async move {
      let mut test_structure: MyTestStructure = db
        .fluent()
        .select()
        .by_id_in(TEST_COLLECTION_NAME)
        .obj()
        .one(TEST_DOCUMENT_ID)
        .await?
        .expect("Missing document");

      // Perform some kind of operation that depends on the state of the document
      test_structure.test_string += "a";

      db.fluent()
        .update()
        .fields(paths!(MyTestStructure::{
          test_string
         }))
        .in_col(TEST_COLLECTION_NAME)
        .document_id(TEST_DOCUMENT_ID)
        .object(&test_structure)
        .add_to_transaction(transaction) ?;

        Ok(())
      })
})
  .await?;
```

See the complete example available [here](examples/read-write-transactions.rs).

Please note that Firestore doesn't support creating documents in the transactions (generating
document IDs automatically), so you need to use `update()` to implicitly create documents and specifying your own IDs.

## Reading Firestore document metadata as struct fields

Firestore provides additional generated fields for each of document you create:

- `_firestore_id`: Generated document ID (when it is not specified from the client);
- `_firestore_created`: The time at which the document was created;
- `_firestore_updated`: The time at which the document was last changed;

To be able to read them the library makes them available
as system fields for the Serde deserializer with reserved names,
so you can specify them in your structures as:

```rust
#[derive(Debug, Clone, Deserialize, Serialize)]
struct MyTestStructure {
    #[serde(alias = "_firestore_id")]
    id: Option<String>,
    #[serde(alias = "_firestore_created")]
    created_at: Option<DateTime<Utc>>,
    #[serde(alias = "_firestore_updated")]
    updated_at: Option<DateTime<Utc>>,
    some_string: String,
    one_more_string: String,
    some_num: u64,
}
```

Complete example available [here](examples/generated-document-id.rs).

## Working on dynamic/document level

Sometimes having static structure may restrict you from working with dynamic data,
so there is a way to use Fluent API to work with documents without introducing structures at all.

```rust
let object_returned = db
.fluent()
.insert()
.into(TEST_COLLECTION_NAME)
.document_id("test-1")
.document(FirestoreDb::serialize_map_to_doc("",
    [
      ("some_id", "test-id".into()),
      ("some_string", "test-value".into()),
      ("some_num", 42.into()),
      (
      "embedded_obj",
        FirestoreValue::from_map([
          ("inner_some_id", "inner-id-value".into()),
          ("inner_some_string", "inner-some-value".into()),
        ]),
      ),
      ("created_at", FirestoreTimestamp(Utc::now()).into()),
    ])?
)
.execute()
.await?;

```

Full example available [here](examples/dynamic_doc_level_crud.rs).

## Document transformations

The library supports server side document transformations in transactions and batch writes:

```rust

// Only transformation
db.fluent()
.update()
.in_col(TEST_COLLECTION_NAME)
.document_id("test-4")
.transforms(|t| { // Transformations
    t.fields([
      t.field(path!(MyTestStructure::some_num)).increment(10),
      t.field(path!(MyTestStructure::some_array)).append_missing_elements([4, 5]),
      t.field(path!(MyTestStructure::some_array)).remove_all_from_array([3]),
    ])
})
.only_transform()
.add_to_transaction( & mut transaction) ?; // or add_to_batch

// Update and transform (in this order and atomically):
db.fluent()
.update()
.in_col(TEST_COLLECTION_NAME)
.document_id("test-5")
.object(&my_obj) // Updating the objects with the fields here
.transforms(|t| { // Transformations after the update
    t.fields([
      t.field(path!(MyTestStructure::some_num)).increment(10),
    ])
})
.add_to_transaction(&mut transaction) ?; // or add_to_batch
```

## Listening the document changes on Firestore

To help to work with asynchronous event listener the library supports high level API for
listening the events from Firestore on a separate thread:

The listener implementation needs to be provided with a storage for the last received token for specified targets to be
able to resume listening the changes from the last handled token and to avoid receiving all previous changes.

The library provides basic implementations for storing the tokens but you can implement your own more sophisticated
storage if needed:

- `FirestoreTempFilesListenStateStorage` - resume tokens stored as temporary files on local FS;
- `FirestoreMemListenStateStorage` - in memory storage backed by HashMap (with this implementation if you restart your
  app, you will receive all notifications again);

```rust

let mut listener = db.create_listener(
    FirestoreTempFilesListenStateStorage::new() // or FirestoreMemListenStateStorage or your own implementation 
).await?;

// Adding query listener
db.fluent()
.select()
.from(TEST_COLLECTION_NAME)
.listen()
.add_target(TEST_TARGET_ID_BY_QUERY, &mut listener) ?;

// Adding docs listener by IDs
db.fluent()
.select()
.by_id_in(TEST_COLLECTION_NAME)
.batch_listen([doc_id1, doc_id2])
.add_target(TEST_TARGET_ID_BY_DOC_IDS, &mut listener) ?;

listener
.start( | event| async move {
    match event {
        FirestoreListenEvent::DocumentChange( ref doc_change) => {
            println ! ("Doc changed: {:?}", doc_change);
            
            if let Some(doc) = & doc_change.document {
              let obj: MyTestStructure =
              FirestoreDb::deserialize_doc_to::<MyTestStructure > (doc)
              .expect("Deserialized object");
              println ! ("As object: {:?}", obj);
            }
        }
        _ => {
          println ! ("Received a listen response event to handle: {:?}", event);
        }
    }

  Ok(())
})
.await?;

// Wait some events like Ctrl-C, signals, etc
// <put-your-implementation-for-wait-here>

// and then shutdown
listener.shutdown().await?;

```

See complete example in examples directory.

## Explicit null value serialization

By default, all Option<> serialized as absent fields, which is convenient for many cases.
However sometimes you need to have explicit nulls.

To help with that there are additional attributes implemented for `serde(with)`:

* For any type:

```rust
#[serde(default)]
#[serde(with = "firestore::serialize_as_null")]
test_null: Option<String>,
```

* For Firestore timestamps attribute:

```rust
#[serde(default)]
#[serde(with = "firestore::serialize_as_null_timestamp")]
test_null: Option<DateTime<Utc> >,
```

## Select aggregate functions

The library supports the aggregation functions for the queries:

```rust
db.fluent()
  .select()
  .from(TEST_COLLECTION_NAME)
  .aggregate(|a| a.fields([a.field(path!(MyAggTestStructure::counter)).count()]))
  .obj()
  .query()
  .await?;
```

## Update/delete preconditions

The library supports the preconditions:

```rust
  .precondition(FirestoreWritePrecondition::Exists(true))
```

## Explaining the query

The library supports the query explanation:

```rust
db.fluent()
  .select()
  .from(TEST_COLLECTION_NAME)
  .explain()
  // or use explain_with_options if you want to provide additional options like analyze which run query to gather additional statistics 
  // .explain_with_options(FirestoreExplainOptions::new().with_analyze(true))
  .stream_query_with_metadata()
  .await?;
```

## Google authentication

Looks for credentials in the following places, preferring the first location found:

- A JSON file whose path is specified by the GOOGLE_APPLICATION_CREDENTIALS environment variable.
- A JSON file in a location known to the gcloud command-line tool using `gcloud auth application-default login`.
- On Google Compute Engine, it fetches credentials from the metadata server.

### Local development

Don't confuse `gcloud auth login` with `gcloud auth application-default login` for local development,
since the first authorize only `gcloud` tool to access the Cloud Platform.

The latter obtains user access credentials via a web flow and puts them in the well-known location for Application
Default Credentials (ADC).
This command is useful when you are developing code that would normally use a service account but need to run the code
in a local development environment where it's easier to provide user credentials.
So to work for local development you need to use `gcloud auth application-default login`.

## Working with docker images

When you design your Dockerfile make sure you either installed Root CA certificates or use base images that already
include them.
If you don't have certs installed you usually observe the errors such as:

```
SystemError(FirestoreSystemError { public: FirestoreErrorPublicGenericDetails { code: "GrpcStatus(tonic::transport::Error(Transport, hyper::Error(Connect, Custom { kind: InvalidData, error: InvalidCertificateData(\"invalid peer certificate: UnknownIssuer\") })))" }, message: "GCloud system error: Tonic/gRPC error: transport error" })
```

For example for Debian based images, this usually can be fixed using this package:

```
RUN apt-get install -y ca-certificates
```

Also, I recommend considering using [Google Distroless images](https://github.com/GoogleContainerTools/distroless) since
they are secure, already include Root CA certs, and are optimised for size.

## Firestore emulator

To work with the Google Firestore emulator you can use the environment variable:

```
export FIRESTORE_EMULATOR_HOST="localhost:8080"
```

or specify it as an option using `FirestoreDb::with_options()`

## Caching

The library supports caching for collections and documents. Caching is leveraging the Firestore listener to update the
cache when the document is changed,
that means the updates will be propagated across distributed instances automatically for you.

This is useful to avoid reading and paying for the same documents from Firestore multiple times.
Especially for some data such as dictionaries, configuration, and other information
that is not changed frequently. In fact, this may be really helpful to reduce both costs
and latency in your applications.

Caching works on the document level.
The cache will be used for the following operations:

- Reading documents by IDs (get and batch get);
- Listing all documents in a collection;
- Partial support for querying documents in a collection:
    - Filtering;
    - Ordering;
    - Paging/Cursors;

(Caching other operations may be extended in the future).

The library provides two implementations of the cache:

- In-memory cache, implemented using [moka cache library]https://github.com/moka-rs/moka;
- Persistent cache, implemented using [redb]https://github.com/cberner/redb and protobuf;

Caching is opt-in and you need to enable it when needed using cargo features:

- `caching-memory` for in-memory cache;
- `caching-persistent` for persistent/disk-backed cache;

### Load modes

Caching supports different init/load modes:

- `PreloadNone`: Don't preload anything, just fill in the cache while working;
- `PreloadAllDocs`: Preload all documents from the collection to the cache;
- `PreloadAllIfEmpty`: Preload all documents from the collection to the cache only if the cache is empty (this is only
  useful for persistent cache, for memory cache it is the same as `PreloadAllDocs`);

### How a cache is updated

Update cache is done in the following cases:

- When you read a document through a cache by ID and it is not found in the cache, it will be loaded from Firestore and
  cached;
- Firestore listener will update the cache when it receives a notification about the document change (externally or from
  your app);
- Using Preloads at the startup time;

### Usage

```rust
// Create an instance
let db = FirestoreDb::new( &config_env_var("PROJECT_ID") ? ).await?;

const TEST_COLLECTION_NAME: &'static str = "test-caching";

// Create a cache instance that also creates an internal Firestore listener
let mut cache = FirestoreCache::new(
"example-mem-cache".into(),
&db,
FirestoreMemoryCacheBackend::new(
  FirestoreCacheConfiguration::new().add_collection_config(
    &db,
    FirestoreCacheCollectionConfiguration::new(
      TEST_COLLECTION_NAME,
      FirestoreListenerTarget::new(1000),
      FirestoreCacheCollectionLoadMode::PreloadNone,
    )
  ),
)?,
  FirestoreMemListenStateStorage::new(),
)
.await?;

// Load and init cache
cache.load().await?; // Required even if you don't preload anything

// Read a document through the cache. If it is not found in the cache, it will be loaded from Firestore and cached.
let my_struct0: Option<MyTestStructure> = db.read_through_cache(&cache)
  .fluent()
  .select()
  .by_id_in(TEST_COLLECTION_NAME)
  .obj()
  .one("test-1")
  .await?;

// Read a document only from the cache. If it is not found in the cache, it will return None.
let my_struct0: Option<MyTestStructure> = db.read_cached_only(&cache)
  .fluent()
  .select()
  .by_id_in(TEST_COLLECTION_NAME)
  .obj()
  .one("test-1")
  .await?;

```

Full examples available [here](examples/caching_memory_collections.rs)
and [here](examples/caching_persistent_collections.rs).

## TLS related features
Cargo provides support for different TLS features for dependencies:
- `tls-roots`: default feature to support native TLS roots
- `tls-webpki-roots`: feature to switch to webpki crate roots

## How this library is tested

There are integration tests in the tests directory that runs for every commit against the real
Firestore instance allocated for testing purposes. Be aware not to introduce huge document reads/updates
and collection isolation from other tests.

## Licence

Apache Software License (ASL)

## Author

Abdulla Abdurakhmanov