[](https://crates.io/crates/finalfrontier)
[](https://docs.rs/finalfrontier/)
[](https://travis-ci.org/finalfusion/finalfrontier)
# finalfrontier
## Introduction
finalfrontier is a Rust program for training word embeddings.
finalfrontier currently has the following features:
* Models:
- skip-gram (Mikolov et al., 2013)
- structured skip-gram (Ling et al., 2015)
- directional skip-gram (Song et al., 2018)
- dependency (Levy and Goldberg, 2014)
* Output formats:
- [finalfusion](https://finalfusion.github.io)
- fastText
- word2vec binary
- word2vec text
- GloVe text
* Noise contrastive estimation (Gutmann and Hyvärinen, 2012)
* Subword representations (Bojanowski et al., 2016)
* Hogwild SGD (Recht et al., 2011)
* Quantized embeddings through the [`finalfusion
quantize`](https://github.com/finalfusion/finalfusion-utils)
command.
The trained embeddings can be stored in the versatile `finalfusion`
format, which can be read and used with the
[finalfusion](https://github.com/finalfusion/finalfusion-rust) crate
and the
[finalfusion](https://github.com/finalfusion/finalfusion-python)
Python module.
The minimum required Rust version is currently 1.40.
## Where to go from here
* [Installation](docs/INSTALL.md)
* [Quickstart](docs/QUICKSTART.md)
* Manual pages:
- [finalfrontier-skipgram(1)](man/finalfrontier-skipgram.1.md) — train word
embeddings with the (structured) skip-gram model
- [finalfrontier-deps(1)](man/finalfrontier-deps.1.md) — train word embeddings with dependency contexts
* [finalfusion crate](https://github.com/finalfusion/finalfusion-rust)
* [Python module](https://github.com/finalfusion/finalfusion-python)