1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Explicit lifetimes are clearer when we are working with raw pointers,
// as the compiler will not warn us if we specify lifetime constraints
// which are too lax.
#![allow(clippy::needless_lifetimes)]

use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::ops::Add;

#[doc(hidden)]
pub extern crate memoffset as __memoffset; // `pub` for macro availability

/// Represents a pointer to a field of type `U` within the type `T`
#[repr(transparent)]
pub struct FieldOffset<T, U>(
    /// Offset in bytes of the field within the struct
    usize,
    /// A pointer-to-member can be thought of as a function from
    /// `&T` to `&U` with matching lifetimes
    PhantomData<dyn for<'a> Fn(&'a T) -> &'a U>,
);

impl<T, U> FieldOffset<T, U> {
    // Use MaybeUninit to get a fake T
    #[cfg(fieldoffset_maybe_uninit)]
    #[inline]
    fn with_uninit_ptr<R, F: FnOnce(*const T) -> R>(f: F) -> R {
        let uninit = mem::MaybeUninit::<T>::uninit();
        f(uninit.as_ptr())
    }

    // Use a dangling pointer to get a fake T
    #[cfg(not(fieldoffset_maybe_uninit))]
    #[inline]
    fn with_uninit_ptr<R, F: FnOnce(*const T) -> R>(f: F) -> R {
        f(mem::align_of::<T>() as *const T)
    }

    /// Construct a field offset via a lambda which returns a reference
    /// to the field in question.
    ///
    /// # Safety
    ///
    /// The lambda *must not* dereference the provided pointer or access the
    /// inner value in any way as it may point to uninitialized memory.
    ///
    /// For the returned `FieldOffset` to be safe to use, the returned pointer
    /// must be valid for *any* instance of `T`. For example, returning a pointer
    /// to a field from an enum with multiple variants will produce a `FieldOffset`
    /// which is unsafe to use.
    pub unsafe fn new<F: for<'a> FnOnce(*const T) -> *const U>(f: F) -> Self {
        let offset = Self::with_uninit_ptr(|base_ptr| {
            let field_ptr = f(base_ptr);
            (field_ptr as usize).wrapping_sub(base_ptr as usize)
        });

        // Construct an instance using the offset
        Self::new_from_offset(offset)
    }
    /// Construct a field offset directly from a byte offset.
    ///
    /// # Safety
    ///
    /// For the returned `FieldOffset` to be safe to use, the field offset
    /// must be valid for *any* instance of `T`. For example, returning the offset
    /// to a field from an enum with multiple variants will produce a `FieldOffset`
    /// which is unsafe to use.
    #[inline]
    pub unsafe fn new_from_offset(offset: usize) -> Self {
        // Sanity check: ensure that the field offset plus the field size
        // is no greater than the size of the containing struct. This is
        // not sufficient to make the function *safe*, but it does catch
        // obvious errors like returning a reference to a boxed value,
        // which is owned by `T` and so has the correct lifetime, but is not
        // actually a field.
        assert!(offset + mem::size_of::<U>() <= mem::size_of::<T>());

        FieldOffset(offset, PhantomData)
    }

    // Methods for applying the pointer to member

    /// Apply the field offset to a native pointer.
    #[inline]
    pub fn apply_ptr(self, x: *const T) -> *const U {
        ((x as usize) + self.0) as *const U
    }
    /// Apply the field offset to a native mutable pointer.
    #[inline]
    pub fn apply_ptr_mut(self, x: *mut T) -> *mut U {
        ((x as usize) + self.0) as *mut U
    }
    /// Apply the field offset to a reference.
    #[inline]
    pub fn apply<'a>(self, x: &'a T) -> &'a U {
        unsafe { &*self.apply_ptr(x) }
    }
    /// Apply the field offset to a mutable reference.
    #[inline]
    pub fn apply_mut<'a>(self, x: &'a mut T) -> &'a mut U {
        unsafe { &mut *self.apply_ptr_mut(x) }
    }
    /// Get the raw byte offset for this field offset.
    #[inline]
    pub fn get_byte_offset(self) -> usize {
        self.0
    }

    // Methods for unapplying the pointer to member

    /// Unapply the field offset to a native pointer.
    ///
    /// # Safety
    ///
    /// *Warning: very unsafe!*
    ///
    /// This applies a negative offset to a pointer. If the safety
    /// implications of this are not already clear to you, then *do
    /// not* use this method. Also be aware that Rust has stronger
    /// aliasing rules than other languages, so it may be UB to
    /// dereference the resulting pointer even if it points to a valid
    /// location, due to the presence of other live references.
    #[inline]
    pub unsafe fn unapply_ptr(self, x: *const U) -> *const T {
        ((x as usize) - self.0) as *const T
    }
    /// Unapply the field offset to a native mutable pointer.
    ///
    /// # Safety
    ///
    /// *Warning: very unsafe!*
    ///
    /// This applies a negative offset to a pointer. If the safety
    /// implications of this are not already clear to you, then *do
    /// not* use this method. Also be aware that Rust has stronger
    /// aliasing rules than other languages, so it may be UB to
    /// dereference the resulting pointer even if it points to a valid
    /// location, due to the presence of other live references.
    #[inline]
    pub unsafe fn unapply_ptr_mut(self, x: *mut U) -> *mut T {
        ((x as usize) - self.0) as *mut T
    }
    /// Unapply the field offset to a reference.
    ///
    /// # Safety
    ///
    /// *Warning: very unsafe!*
    ///
    /// This applies a negative offset to a reference. If the safety
    /// implications of this are not already clear to you, then *do
    /// not* use this method. Also be aware that Rust has stronger
    /// aliasing rules than other languages, so this method may cause UB
    /// even if the resulting reference points to a valid location, due
    /// to the presence of other live references.
    #[inline]
    pub unsafe fn unapply<'a>(self, x: &'a U) -> &'a T {
        &*self.unapply_ptr(x)
    }
    /// Unapply the field offset to a mutable reference.
    ///
    /// # Safety
    ///
    /// *Warning: very unsafe!*
    ///
    /// This applies a negative offset to a reference. If the safety
    /// implications of this are not already clear to you, then *do
    /// not* use this method. Also be aware that Rust has stronger
    /// aliasing rules than other languages, so this method may cause UB
    /// even if the resulting reference points to a valid location, due
    /// to the presence of other live references.
    #[inline]
    pub unsafe fn unapply_mut<'a>(self, x: &'a mut U) -> &'a mut T {
        &mut *self.unapply_ptr_mut(x)
    }
}

/// Allow chaining pointer-to-members.
///
/// Applying the resulting field offset is equivalent to applying the first
/// field offset, then applying the second field offset.
///
/// The requirements on the generic type parameters ensure this is a safe operation.
impl<T, U, V> Add<FieldOffset<U, V>> for FieldOffset<T, U> {
    type Output = FieldOffset<T, V>;

    #[inline]
    fn add(self, other: FieldOffset<U, V>) -> FieldOffset<T, V> {
        FieldOffset(self.0 + other.0, PhantomData)
    }
}

/// The debug implementation prints the byte offset of the field in hexadecimal.
impl<T, U> fmt::Debug for FieldOffset<T, U> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "FieldOffset({:#x})", self.0)
    }
}

impl<T, U> Copy for FieldOffset<T, U> {}
impl<T, U> Clone for FieldOffset<T, U> {
    fn clone(&self) -> Self {
        *self
    }
}

/// This macro allows safe construction of a FieldOffset,
/// by generating a known to be valid lambda to pass to the
/// constructor. It takes a type and the identifier of a field
/// within that type as input.
///
/// Examples:
///
/// Offset of field `Foo.bar`
///
/// ```rust
/// # #[macro_use]
/// # extern crate field_offset;
/// # fn main() {
/// #[repr(C)]
/// struct Foo { foo: i32, bar: i32 }
/// assert_eq!(offset_of!(Foo => bar).get_byte_offset(), 4);
/// # }
/// ```
///
/// Offset of nested field `Foo.bar.x`
///
/// ```rust
/// # #[macro_use]
/// # extern crate field_offset;
/// # fn main() {
/// struct Bar { a: u8, x: u8 }
/// struct Foo { foo: i32, bar: Bar }
/// assert_eq!(offset_of!(Foo => bar: Bar => x).get_byte_offset(), 5);
/// # }
/// ```
#[macro_export]
macro_rules! offset_of {
    ($t: path => $f: tt) => {{
        // Construct the offset
        #[allow(unused_unsafe)]
        unsafe {
            $crate::FieldOffset::<$t, _>::new(|x| {
                $crate::__memoffset::raw_field!(x, $t, $f)
            })
        }
    }};
    ($t: path => $f: ident: $($rest: tt)*) => {
        offset_of!($t => $f) + offset_of!($($rest)*)
    };
}

#[cfg(test)]
mod tests {
    // Example structs
    #[derive(Debug)]
    struct Foo {
        a: u32,
        b: f64,
        c: bool,
    }

    #[derive(Debug)]
    struct Bar {
        x: u32,
        y: Foo,
    }

    #[derive(Debug)]
    struct Tuple(i32, f64);

    #[test]
    fn test_simple() {
        // Get a pointer to `b` within `Foo`
        let foo_b = offset_of!(Foo => b);

        // Construct an example `Foo`
        let mut x = Foo {
            a: 1,
            b: 2.0,
            c: false,
        };

        // Apply the pointer to get at `b` and read it
        {
            let y = foo_b.apply(&x);
            assert!(*y == 2.0);
        }

        // Apply the pointer to get at `b` and mutate it
        {
            let y = foo_b.apply_mut(&mut x);
            *y = 42.0;
        }
        assert!(x.b == 42.0);
    }

    #[test]
    fn test_tuple() {
        // Get a pointer to `b` within `Foo`
        let tuple_1 = offset_of!(Tuple => 1);

        // Construct an example `Foo`
        let mut x = Tuple(1, 42.0);

        // Apply the pointer to get at `b` and read it
        {
            let y = tuple_1.apply(&x);
            assert!(*y == 42.0);
        }

        // Apply the pointer to get at `b` and mutate it
        {
            let y = tuple_1.apply_mut(&mut x);
            *y = 5.0;
        }
        assert!(x.1 == 5.0);
    }

    #[test]
    fn test_nested() {
        // Construct an example `Foo`
        let mut x = Bar {
            x: 0,
            y: Foo {
                a: 1,
                b: 2.0,
                c: false,
            },
        };

        // Combine the pointer-to-members
        let bar_y_b = offset_of!(Bar => y: Foo => b);

        // Apply the pointer to get at `b` and mutate it
        {
            let y = bar_y_b.apply_mut(&mut x);
            *y = 42.0;
        }
        assert!(x.y.b == 42.0);
    }

    struct Parameterized<T, U> {
        x: T,
        _y: U,
    }
    #[test]
    fn test_type_parameter() {
        let _ = offset_of!(Parameterized<Parameterized<bool, bool>, bool> => x: Parameterized<bool, bool> => x);
    }
}