1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
// Explicit lifetimes are clearer when we are working with raw pointers, // as the compiler will not warn us if we specify lifetime constraints // which are too lax. #![allow(clippy::needless_lifetimes)] use std::fmt; use std::marker::PhantomData; use std::mem; use std::ops::Add; #[doc(hidden)] pub extern crate memoffset as __memoffset; // `pub` for macro availability /// Represents a pointer to a field of type `U` within the type `T` #[repr(transparent)] pub struct FieldOffset<T, U>( /// Offset in bytes of the field within the struct usize, /// A pointer-to-member can be thought of as a function from /// `&T` to `&U` with matching lifetimes PhantomData<dyn for<'a> Fn(&'a T) -> &'a U>, ); impl<T, U> FieldOffset<T, U> { // Use MaybeUninit to get a fake T #[cfg(fieldoffset_maybe_uninit)] #[inline] fn with_uninit_ptr<R, F: FnOnce(*const T) -> R>(f: F) -> R { let uninit = mem::MaybeUninit::<T>::uninit(); f(uninit.as_ptr()) } // Use a dangling pointer to get a fake T #[cfg(not(fieldoffset_maybe_uninit))] #[inline] fn with_uninit_ptr<R, F: FnOnce(*const T) -> R>(f: F) -> R { f(mem::align_of::<T>() as *const T) } /// Construct a field offset via a lambda which returns a reference /// to the field in question. /// /// # Safety /// /// The lambda *must not* dereference the provided pointer or access the /// inner value in any way as it may point to uninitialized memory. /// /// For the returned `FieldOffset` to be safe to use, the returned pointer /// must be valid for *any* instance of `T`. For example, returning a pointer /// to a field from an enum with multiple variants will produce a `FieldOffset` /// which is unsafe to use. pub unsafe fn new<F: for<'a> FnOnce(*const T) -> *const U>(f: F) -> Self { let offset = Self::with_uninit_ptr(|base_ptr| { let field_ptr = f(base_ptr); (field_ptr as usize).wrapping_sub(base_ptr as usize) }); // Construct an instance using the offset Self::new_from_offset(offset) } /// Construct a field offset directly from a byte offset. /// /// # Safety /// /// For the returned `FieldOffset` to be safe to use, the field offset /// must be valid for *any* instance of `T`. For example, returning the offset /// to a field from an enum with multiple variants will produce a `FieldOffset` /// which is unsafe to use. #[inline] pub unsafe fn new_from_offset(offset: usize) -> Self { // Sanity check: ensure that the field offset plus the field size // is no greater than the size of the containing struct. This is // not sufficient to make the function *safe*, but it does catch // obvious errors like returning a reference to a boxed value, // which is owned by `T` and so has the correct lifetime, but is not // actually a field. assert!(offset + mem::size_of::<U>() <= mem::size_of::<T>()); FieldOffset(offset, PhantomData) } // Methods for applying the pointer to member /// Apply the field offset to a native pointer. #[inline] pub fn apply_ptr(self, x: *const T) -> *const U { ((x as usize) + self.0) as *const U } /// Apply the field offset to a native mutable pointer. #[inline] pub fn apply_ptr_mut(self, x: *mut T) -> *mut U { ((x as usize) + self.0) as *mut U } /// Apply the field offset to a reference. #[inline] pub fn apply<'a>(self, x: &'a T) -> &'a U { unsafe { &*self.apply_ptr(x) } } /// Apply the field offset to a mutable reference. #[inline] pub fn apply_mut<'a>(self, x: &'a mut T) -> &'a mut U { unsafe { &mut *self.apply_ptr_mut(x) } } /// Get the raw byte offset for this field offset. #[inline] pub fn get_byte_offset(self) -> usize { self.0 } // Methods for unapplying the pointer to member /// Unapply the field offset to a native pointer. /// /// # Safety /// /// *Warning: very unsafe!* /// /// This applies a negative offset to a pointer. If the safety /// implications of this are not already clear to you, then *do /// not* use this method. Also be aware that Rust has stronger /// aliasing rules than other languages, so it may be UB to /// dereference the resulting pointer even if it points to a valid /// location, due to the presence of other live references. #[inline] pub unsafe fn unapply_ptr(self, x: *const U) -> *const T { ((x as usize) - self.0) as *const T } /// Unapply the field offset to a native mutable pointer. /// /// # Safety /// /// *Warning: very unsafe!* /// /// This applies a negative offset to a pointer. If the safety /// implications of this are not already clear to you, then *do /// not* use this method. Also be aware that Rust has stronger /// aliasing rules than other languages, so it may be UB to /// dereference the resulting pointer even if it points to a valid /// location, due to the presence of other live references. #[inline] pub unsafe fn unapply_ptr_mut(self, x: *mut U) -> *mut T { ((x as usize) - self.0) as *mut T } /// Unapply the field offset to a reference. /// /// # Safety /// /// *Warning: very unsafe!* /// /// This applies a negative offset to a reference. If the safety /// implications of this are not already clear to you, then *do /// not* use this method. Also be aware that Rust has stronger /// aliasing rules than other languages, so this method may cause UB /// even if the resulting reference points to a valid location, due /// to the presence of other live references. #[inline] pub unsafe fn unapply<'a>(self, x: &'a U) -> &'a T { &*self.unapply_ptr(x) } /// Unapply the field offset to a mutable reference. /// /// # Safety /// /// *Warning: very unsafe!* /// /// This applies a negative offset to a reference. If the safety /// implications of this are not already clear to you, then *do /// not* use this method. Also be aware that Rust has stronger /// aliasing rules than other languages, so this method may cause UB /// even if the resulting reference points to a valid location, due /// to the presence of other live references. #[inline] pub unsafe fn unapply_mut<'a>(self, x: &'a mut U) -> &'a mut T { &mut *self.unapply_ptr_mut(x) } } /// Allow chaining pointer-to-members. /// /// Applying the resulting field offset is equivalent to applying the first /// field offset, then applying the second field offset. /// /// The requirements on the generic type parameters ensure this is a safe operation. impl<T, U, V> Add<FieldOffset<U, V>> for FieldOffset<T, U> { type Output = FieldOffset<T, V>; #[inline] fn add(self, other: FieldOffset<U, V>) -> FieldOffset<T, V> { FieldOffset(self.0 + other.0, PhantomData) } } /// The debug implementation prints the byte offset of the field in hexadecimal. impl<T, U> fmt::Debug for FieldOffset<T, U> { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "FieldOffset({:#x})", self.0) } } impl<T, U> Copy for FieldOffset<T, U> {} impl<T, U> Clone for FieldOffset<T, U> { fn clone(&self) -> Self { *self } } /// This macro allows safe construction of a FieldOffset, /// by generating a known to be valid lambda to pass to the /// constructor. It takes a type and the identifier of a field /// within that type as input. /// /// Examples: /// /// Offset of field `Foo.bar` /// /// ```rust /// # #[macro_use] /// # extern crate field_offset; /// # fn main() { /// #[repr(C)] /// struct Foo { foo: i32, bar: i32 } /// assert_eq!(offset_of!(Foo => bar).get_byte_offset(), 4); /// # } /// ``` /// /// Offset of nested field `Foo.bar.x` /// /// ```rust /// # #[macro_use] /// # extern crate field_offset; /// # fn main() { /// struct Bar { a: u8, x: u8 } /// struct Foo { foo: i32, bar: Bar } /// assert_eq!(offset_of!(Foo => bar: Bar => x).get_byte_offset(), 5); /// # } /// ``` #[macro_export] macro_rules! offset_of { ($t: path => $f: tt) => {{ // Construct the offset #[allow(unused_unsafe)] unsafe { $crate::FieldOffset::<$t, _>::new(|x| { $crate::__memoffset::raw_field!(x, $t, $f) }) } }}; ($t: path => $f: ident: $($rest: tt)*) => { offset_of!($t => $f) + offset_of!($($rest)*) }; } #[cfg(test)] mod tests { // Example structs #[derive(Debug)] struct Foo { a: u32, b: f64, c: bool, } #[derive(Debug)] struct Bar { x: u32, y: Foo, } #[derive(Debug)] struct Tuple(i32, f64); #[test] fn test_simple() { // Get a pointer to `b` within `Foo` let foo_b = offset_of!(Foo => b); // Construct an example `Foo` let mut x = Foo { a: 1, b: 2.0, c: false, }; // Apply the pointer to get at `b` and read it { let y = foo_b.apply(&x); assert!(*y == 2.0); } // Apply the pointer to get at `b` and mutate it { let y = foo_b.apply_mut(&mut x); *y = 42.0; } assert!(x.b == 42.0); } #[test] fn test_tuple() { // Get a pointer to `b` within `Foo` let tuple_1 = offset_of!(Tuple => 1); // Construct an example `Foo` let mut x = Tuple(1, 42.0); // Apply the pointer to get at `b` and read it { let y = tuple_1.apply(&x); assert!(*y == 42.0); } // Apply the pointer to get at `b` and mutate it { let y = tuple_1.apply_mut(&mut x); *y = 5.0; } assert!(x.1 == 5.0); } #[test] fn test_nested() { // Construct an example `Foo` let mut x = Bar { x: 0, y: Foo { a: 1, b: 2.0, c: false, }, }; // Combine the pointer-to-members let bar_y_b = offset_of!(Bar => y: Foo => b); // Apply the pointer to get at `b` and mutate it { let y = bar_y_b.apply_mut(&mut x); *y = 42.0; } assert!(x.y.b == 42.0); } struct Parameterized<T, U> { x: T, _y: U, } #[test] fn test_type_parameter() { let _ = offset_of!(Parameterized<Parameterized<bool, bool>, bool> => x: Parameterized<bool, bool> => x); } }