fidget 0.3.8

Infrastructure for complex closed-form implicit surfaces
Documentation
use std::{
    collections::{BTreeMap, BTreeSet},
    io::Write,
};

// Same axes as in `fidget::mesh`, but available at build time.
const X: usize = 1;
const Y: usize = 2;
const Z: usize = 4;

fn next(axis: usize) -> usize {
    assert_eq!(axis.count_ones(), 1);
    assert!(axis < 8);

    let out = (axis | axis.rotate_right(3)).rotate_left(1) & (X | Y | Z);
    assert_eq!(out.count_ones(), 1);
    assert!(out < 8);

    out
}

fn main() {
    // The build script stands alone; ignore other changes (e.g. edits to
    // benchmarks in the benches subfolder).
    println!("cargo:rerun-if-changed=build.rs");

    // Check CPU feature support and error out if we don't have the appropriate
    // features. This isn't a fool-proof – someone could build on a machine with
    // AVX2 support, then try running those binaries elsewhere – but is a good
    // first line of defense.
    if std::env::var("CARGO_FEATURE_JIT").is_ok() {
        #[cfg(target_arch = "x86_64")]
        if !std::arch::is_x86_feature_detected!("avx2") {
            eprintln!(
                "`x86_64` build with `jit` enabled requires AVX2 instructions"
            );
            std::process::exit(1);
        }

        #[cfg(target_arch = "aarch64")]
        if !std::arch::is_aarch64_feature_detected!("neon") {
            eprintln!(
                "`aarch64` build with `jit` enabled requires NEON instructions"
            );
            std::process::exit(1);
        }
    }

    build_mdc_table().unwrap();
}

/// Builds a table for Manifold Dual Contouring connectivity.
///
/// This is roughly equivalent to Figure 5 in Nielson's Dual Marching Cubes
/// (2004), but worked out automatically by clustering cell corners.
fn build_mdc_table() -> Result<(), std::io::Error> {
    // vert_table will contain 256 entries.  Each entry contains some number of
    // vertices, which each contain some number of edges (as `(u8, u8)` tuples,
    // from inside corner to outside corner)
    let mut vert_table: Vec<Vec<Vec<(u8, u8)>>> = vec![];
    let mut edge_table = vec![];

    for i in 0..256 {
        let mut filled_regions = BTreeMap::new();
        let mut empty_regions = BTreeMap::new();
        for j in 0..8 {
            if (i & (1 << j)) == 0 {
                empty_regions.insert(j, 1 << j);
            } else {
                filled_regions.insert(j, 1 << j);
            }
        }
        // Collapse connected cells in both filled and empty regions
        for r in [&mut filled_regions, &mut empty_regions] {
            loop {
                let mut changed = false;
                let mut next = r.clone();
                for f in r.keys() {
                    for axis in [X, Y, Z] {
                        let g = &(f ^ axis);
                        if r.contains_key(g) {
                            let v = next[f] | next[g];
                            changed |= (next[f] != v) | (next[g] != v);

                            *next.get_mut(f).unwrap() = v;
                            *next.get_mut(g).unwrap() = v;
                        }
                    }
                }
                *r = next;
                if !changed {
                    break;
                }
            }
        }
        // At this point, {filled,empty}_regions are maps from a vertex
        // number (0-7) to a mask of the region containing that vertex.
        //
        // We can discard the vertex numbers and just store the region masks
        // before processing them further
        let filled_regions: BTreeSet<u8> =
            filled_regions.into_values().collect();
        let empty_regions: BTreeSet<u8> = empty_regions.into_values().collect();

        // Now, we can flatten into a map from vertex (0-7) to an abstract
        // region number (0-), since that's what actually matters when
        // grouping transitions.
        let mut regions = [u8::MAX; 8];
        for (i, r) in filled_regions
            .into_iter()
            .chain(empty_regions.into_iter())
            .enumerate()
        {
            for (j, region) in regions.iter_mut().enumerate() {
                if r & (1 << j) != 0 {
                    assert_eq!(*region, u8::MAX);
                    *region = i as u8;
                }
            }
        }

        // We're finally ready to build the edge transition table!
        //
        // vert_map is a map from start region to a vertex, defined as a list
        // of edges that built that vertex.
        let mut verts: BTreeMap<_, Vec<_>> = BTreeMap::new();
        for rev in [false, true] {
            // t-u-v forms a right-handed coordinate system
            for t in [X, Y, Z] {
                let u = next(t);
                let v = next(u);
                for b in 0..2 {
                    for a in 0..2 {
                        let start = (a * u) | (b * v);
                        let end = start | t;

                        let (start, end) =
                            if rev { (end, start) } else { (start, end) };

                        // Only process this edge if `start` is inside the model
                        // (non-zero) and `end` is outside (0).
                        if ((i & (1 << start)) != 0) && ((i & (1 << end)) == 0)
                        {
                            let start_region = regions[start];
                            let end_region = regions[end];
                            assert!(start_region != end_region);
                            verts
                                .entry(start_region)
                                .or_default()
                                .push((start, end));
                        }
                    }
                }
            }
        }

        let mut vert_table_entry = vec![];

        // There are two maps associated with this cell:
        // - A list of vertices, each of which has a list of transition edges
        // - A map from transition edge to vertex in the previous list
        let mut edge_map: [Option<(u8, u8)>; 12] = [None; 12];
        let mut intersection_count = 0;
        let vert_count = verts.len();
        #[allow(clippy::identity_op)]
        for (vert, (_, edges)) in verts.iter().enumerate() {
            let mut vert_entry = vec![];

            for &(start, end) in edges {
                assert!((i & (1 << start)) != 0);
                assert!((i & (1 << end)) == 0);

                vert_entry.push((start as u8, end as u8));

                // Build a right-handed coordinate system of T-U-V
                let t = start ^ end;
                let u = next(t);
                let v = next(u);

                assert_eq!(start & u, end & u);
                assert_eq!(start & v, end & v);

                let edge = (t.trailing_zeros() as usize * 4)
                    + (((start & u) != 0) as usize) * 1
                    + (((start & v) != 0) as usize) * 2;

                edge_map[edge] = Some((
                    vert.try_into().unwrap(),
                    (vert_count + intersection_count).try_into().unwrap(),
                ));
                intersection_count += 1;
            }
            vert_table_entry.push(vert_entry);
        }
        edge_table.push(edge_map);
        vert_table.push(vert_table_entry);
    }

    let out_dir = std::env::var_os("OUT_DIR").unwrap();
    let dest_path = std::path::Path::new(&out_dir).join("mdc_tables.rs");
    let mut file =
        std::fs::File::create(dest_path).expect("could not make output file");

    writeln!(
        &mut file,
        "
/// Lookup table to find edges for a particular cell configuration
///
/// Given a cell index `i` (as an 8-bit value), looks up a list of vertices
/// which are required for that cell.  Each vertex is implicitly numbered based
/// on its position in the list, and itself stores a list of edges (as tuples
/// of `(start, end)` cell corners).
pub const CELL_TO_VERT_TO_EDGES: [&[&[DirectedEdge]]; 256] = ["
    )?;

    for v in vert_table {
        writeln!(&mut file, "    &[")?;
        for e in v {
            writeln!(&mut file, "        &[")?;
            for (start, end) in e {
                writeln!(
                    &mut file,
                    "            DirectedEdge::new(Corner::new({start}), \
                                                   Corner::new({end})),"
                )?;
            }
            writeln!(&mut file, "        ],")?;
        }
        writeln!(&mut file, "    ],")?;
    }
    writeln!(&mut file, "];")?;

    writeln!(
        &mut file,
        "
/// Lookup table to find which vertex is associated with a particular edge
///
/// Given a cell index `i` (as an 8-bit value) and an edge index `e` (as a
/// packed undirected value in the range 0-12), returns an [`Intersection`]
/// that encodes the vertex offsets for that edge.
pub const CELL_TO_EDGE_TO_VERT: [[Option<Intersection>; 12]; 256] = ["
    )?;

    for e in edge_table {
        writeln!(&mut file, "    [")?;
        for i in e {
            if let Some((vert, edge)) = i {
                writeln!(
                    &mut file,
                    "        Some(Intersection {{ vert: Offset({vert}), \
                                                  edge: Offset({edge}) }}),"
                )?;
            } else {
                writeln!(&mut file, "        None,")?;
            }
        }
        writeln!(&mut file, "    ],")?;
    }
    writeln!(&mut file, "];")?;

    Ok(())
}