1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
// SPDX-License-Identifier: MIT
// SPDX-FileCopyrightText: Copyright (C) 2023, 2024 Tsukasa OI <floss_ssdeep@irq.a4lg.com>
#[cfg(feature = "alloc")]
use alloc::string::String;
use crate::base64::BASE64_TABLE_U8;
use crate::hash::{FuzzyHashData, fuzzy_norm_type, fuzzy_raw_type};
use crate::hash::block::{
block_size, block_hash,
BlockHashSize, ConstrainedBlockHashSize,
BlockHashSizes, ConstrainedBlockHashSizes
};
use crate::hash::parser_state::{
ParseError, ParseErrorKind, ParseErrorOrigin,
BlockHashParseState
};
use crate::intrinsics::unlikely;
use crate::macros::{optionally_unsafe, invariant};
#[cfg(test)]
mod tests;
/// An RLE Encoding as used in [`FuzzyHashDualData`].
///
/// # Bit Fields
///
/// Current design of the RLE block is basic and compact RLE encoded bytes
/// each consisting of following bitfields:
///
/// * 6 bits of offset
/// * 2 bits of length
///
/// 6 bits is enough to store any block hash offset.
///
/// This `offset` is the one of a normalized block hash (and must be the last
/// character offset of the sequence).
///
/// Because [`block_hash::MAX_SEQUENCE_SIZE`] is larger than `1`, we can use the
/// offset zero as the terminator (if the offset is zero, the length must be
/// encoded as zero, making the RLE block zero-terminated).
///
/// 2 bits of length is enough to compress
/// [`block_hash::MAX_SEQUENCE_SIZE`]` + 1` bytes into one RLE encoding, making
/// the long sequence able to be compressed in a fixed-size RLE block.
///
/// The encoded length is one less than the actual length for efficiency.
/// For instance, encoded `length` of `0` actually means repeating a character
/// once (`1` time) to reverse normalization. Likewise, encoded `1` means
/// repeating a character twice (`2` times).
///
/// 2 bits of length is still small. If we need to extend a character 5
/// (`4 + 1`) times or more, we need multiple RLE encodings (with the same
/// offset field).
mod rle_encoding {
/// Bits used to represent the position (offset).
///
/// This is the start offset to repeat the same character.
///
/// If this field is zero, all succeeding encodings are
/// not meant to be used.
pub const BITS_POSITION: u32 = 6;
/// Mask used to represent the position (offset).
pub const MASK_POSITION: u8 = (1u8 << BITS_POSITION) - 1;
/// Bits used to represent the run length.
///
/// If this RLE encoding is valid, high bits are used to represent
/// `len + 1` because we don't encode zero length.
pub const BITS_RUN_LENGTH: u32 = 2;
/// Maximum run length for the RLE encoding.
pub const MAX_RUN_LENGTH: usize = 1usize << BITS_RUN_LENGTH;
/// Constant assertions related to RLE encoding prerequisites.
#[doc(hidden)]
#[allow(clippy::int_plus_one)]
mod const_asserts {
use super::*;
use static_assertions::{const_assert, const_assert_eq, const_assert_ne};
use crate::hash::block::block_hash;
// Basic Constraints
const_assert_ne!(BITS_POSITION, 0);
const_assert_ne!(BITS_RUN_LENGTH, 0);
const_assert_eq!(BITS_POSITION + BITS_RUN_LENGTH, u8::BITS);
// To use `offset` of zero can be used as the terminator,
// MAX_SEQUENCE_SIZE must be larger than 1 (must be at least 2).
const_assert!(block_hash::MAX_SEQUENCE_SIZE >= 2);
// Offset can contain any block hash index
const_assert!(block_hash::FULL_SIZE <= (1usize << BITS_POSITION));
// Length is large enough to compress MAX_SEQUENCE_SIZE + 1 bytes.
const_assert!(block_hash::MAX_SEQUENCE_SIZE + 1 <= MAX_RUN_LENGTH);
}
/// Encode an RLE encoding from a (position, length) pair.
#[inline(always)]
pub(crate) fn encode(pos: u8, len: u8) -> u8 {
debug_assert!(len != 0);
debug_assert!(len <= MAX_RUN_LENGTH as u8);
debug_assert!(pos != 0);
debug_assert!(pos <= MASK_POSITION);
pos | ((len - 1) << BITS_POSITION)
}
/// Decode an RLE encoding into a (position, length) pair.
#[inline(always)]
pub(crate) fn decode(value: u8) -> (u8, u8) {
(value & MASK_POSITION, (value >> BITS_POSITION) + 1)
}
}
/// A generic type to constrain given block hash size using [`ConstrainedBlockHashSize`].
///
/// # Unstable Type
///
/// Despite that this type is public, it is strongly discouraged to use this
/// type because it exposes a part of opaque "reverse normalization" data and
/// the only reason this type is public is due to restrictions of Rust's
/// current constant generics.
///
/// This type should not be considered stable.
pub struct ReconstructionBlockSize<const SZ_BH: usize, const SZ_R: usize> {}
mod private {
use super::*;
use crate::hash::block::block_hash;
/// A trait to constrain RLE block size for given block hash size.
///
/// This type is implemented for [`ReconstructionBlockSize`]
/// with following block hash sizes:
///
/// * [`block_hash::FULL_SIZE`]
/// * [`block_hash::HALF_SIZE`]
///
/// This is a sealed trait.
pub trait SealedReconstructionBlockSize {}
/// Template to generate RLE block size constraints
/// including constant assertions.
macro_rules! rle_size_for_block_hash_template {
{ $(sizes_def($block_hash_size: expr, $rle_size: expr);)* } => {
$(impl SealedReconstructionBlockSize for ReconstructionBlockSize<{$block_hash_size}, {$rle_size}> {})*
/// Constant assertions related to RLE block size requirements.
#[doc(hidden)]
mod const_asserts {
use super::*;
use static_assertions::const_assert;
// grcov-excl-br-start
// Consider removing it once MSRV of 1.73 is acceptable.
#[cfg_attr(feature = "nightly", coverage(off))]
#[allow(dead_code)]
const fn div_ceil(a: usize, b: usize) -> usize {
cfg_if::cfg_if! {
if #[cfg(ffuzzy_div_ceil = "fallback")] {
a / b + (if a % b == 0 { 0 } else { 1 })
}
else {
usize::div_ceil(a, b)
}
}
}
#[cfg(test)]
#[test]
fn div_ceil_examples() {
assert_eq!(div_ceil(0, 1), 0);
assert_eq!(div_ceil(1, 1), 1);
assert_eq!(div_ceil(2, 1), 2);
assert_eq!(div_ceil(3, 1), 3);
assert_eq!(div_ceil(4, 1), 4);
assert_eq!(div_ceil(5, 1), 5);
assert_eq!(div_ceil(6, 1), 6);
assert_eq!(div_ceil(7, 1), 7);
assert_eq!(div_ceil(8, 1), 8);
assert_eq!(div_ceil(0, 2), 0);
assert_eq!(div_ceil(1, 2), 1);
assert_eq!(div_ceil(2, 2), 1);
assert_eq!(div_ceil(3, 2), 2);
assert_eq!(div_ceil(4, 2), 2);
assert_eq!(div_ceil(5, 2), 3);
assert_eq!(div_ceil(6, 2), 3);
assert_eq!(div_ceil(7, 2), 4);
assert_eq!(div_ceil(8, 2), 4);
assert_eq!(div_ceil(0, 3), 0);
assert_eq!(div_ceil(1, 3), 1);
assert_eq!(div_ceil(2, 3), 1);
assert_eq!(div_ceil(3, 3), 1);
assert_eq!(div_ceil(4, 3), 2);
assert_eq!(div_ceil(5, 3), 2);
assert_eq!(div_ceil(6, 3), 2);
assert_eq!(div_ceil(7, 3), 3);
assert_eq!(div_ceil(8, 3), 3);
assert_eq!(div_ceil(0, 4), 0);
assert_eq!(div_ceil(1, 4), 1);
assert_eq!(div_ceil(2, 4), 1);
assert_eq!(div_ceil(3, 4), 1);
assert_eq!(div_ceil(4, 4), 1);
assert_eq!(div_ceil(5, 4), 2);
assert_eq!(div_ceil(6, 4), 2);
assert_eq!(div_ceil(7, 4), 2);
assert_eq!(div_ceil(8, 4), 2);
}
// grcov-excl-br-stop
// Test each RLE block sizes
$(
// This lower bound is exact.
const_assert!(
div_ceil($block_hash_size, block_hash::MAX_SEQUENCE_SIZE + 1) <= $rle_size
);
// This lower bound might be too pessimistic.
const_assert!(
div_ceil($block_hash_size, rle_encoding::MAX_RUN_LENGTH) <= $rle_size
);
)*
}
};
}
rle_size_for_block_hash_template! {
sizes_def(block_hash::FULL_SIZE, block_hash::FULL_SIZE / 4);
sizes_def(block_hash::HALF_SIZE, block_hash::HALF_SIZE / 4);
}
}
/// A trait to constrain RLE block size for given block hash size.
///
/// This type is implemented for [`ReconstructionBlockSize`] with
/// following block hash sizes:
///
/// * [`block_hash::FULL_SIZE`]
/// * [`block_hash::HALF_SIZE`]
///
/// Note that this trait is intentionally designed to be non-extensible
/// (using the [sealed trait pattern](https://rust-lang.github.io/api-guidelines/future-proofing.html)).
///
/// # Unstable Trait
///
/// Despite that this trait is public, it is strongly discouraged to use this
/// trait because it exposes a part of opaque "reverse normalization" data and
/// the only reason this trait is public is due to restrictions of Rust's
/// current constant generics.
///
/// This trait should not be considered stable.
pub trait ConstrainedReconstructionBlockSize: private::SealedReconstructionBlockSize {}
impl<T> ConstrainedReconstructionBlockSize for T where T: private::SealedReconstructionBlockSize {}
mod algorithms {
use super::*;
/// Compress a raw block hash with normalizing and generating RLE encodings.
#[inline]
pub(crate) fn compress_block_hash_with_rle<const SZ_BH: usize, const SZ_RLE: usize>(
blockhash_out: &mut [u8; SZ_BH],
rle_block_out: &mut [u8; SZ_RLE],
blockhash_len_out: &mut u8,
blockhash_in: &[u8; SZ_BH],
blockhash_len_in: u8
)
where
BlockHashSize<SZ_BH>: ConstrainedBlockHashSize,
ReconstructionBlockSize<SZ_BH, SZ_RLE>: ConstrainedReconstructionBlockSize
{
optionally_unsafe! {
let mut rle_offset = 0usize;
let mut seq = 0usize;
let mut len = 0usize;
let mut prev = crate::base64::BASE64_INVALID;
rle_block_out.fill(0);
for i in 0..blockhash_len_in as usize {
invariant!(i < blockhash_in.len());
let curr: u8 = blockhash_in[i]; // grcov-excl-br-line:ARRAY
if curr == prev {
seq += 1;
if seq >= block_hash::MAX_SEQUENCE_SIZE {
// Preserve sequence length for RLE encoding.
continue;
}
}
else {
if seq >= block_hash::MAX_SEQUENCE_SIZE {
// Use the last character offset in the identical character sequence.
let base_offset = len - 1;
seq -= block_hash::MAX_SEQUENCE_SIZE;
let seq_fill_size = seq / rle_encoding::MAX_RUN_LENGTH;
invariant!(rle_offset < rle_block_out.len());
invariant!(rle_offset + seq_fill_size <= rle_block_out.len());
invariant!(rle_offset <= rle_offset + seq_fill_size);
rle_block_out[rle_offset..rle_offset+seq_fill_size]
.fill(rle_encoding::encode(base_offset as u8, rle_encoding::MAX_RUN_LENGTH as u8)); // grcov-excl-br-line:ARRAY
rle_offset += seq_fill_size;
invariant!(rle_offset < rle_block_out.len());
rle_block_out[rle_offset] =
rle_encoding::encode(base_offset as u8, (seq % rle_encoding::MAX_RUN_LENGTH) as u8 + 1); // grcov-excl-br-line:ARRAY
rle_offset += 1;
invariant!(rle_offset <= rle_block_out.len());
}
seq = 0;
prev = curr;
}
invariant!(len < blockhash_out.len());
blockhash_out[len] = curr; // grcov-excl-br-line:ARRAY
len += 1;
}
// If we processed all original block hash, there's a case where
// we are in an identical character sequence.
if seq >= block_hash::MAX_SEQUENCE_SIZE {
// Use the last character offset in the identical character sequence.
let base_offset = len - 1;
seq -= block_hash::MAX_SEQUENCE_SIZE;
let seq_fill_size = seq / rle_encoding::MAX_RUN_LENGTH;
invariant!(rle_offset < rle_block_out.len());
invariant!(rle_offset + seq_fill_size <= rle_block_out.len());
invariant!(rle_offset <= rle_offset + seq_fill_size);
rle_block_out[rle_offset..rle_offset+seq_fill_size]
.fill(rle_encoding::encode(base_offset as u8, rle_encoding::MAX_RUN_LENGTH as u8)); // grcov-excl-br-line:ARRAY
rle_offset += seq_fill_size;
invariant!(rle_offset < rle_block_out.len());
rle_block_out[rle_offset] =
rle_encoding::encode(base_offset as u8, (seq % rle_encoding::MAX_RUN_LENGTH) as u8 + 1); // grcov-excl-br-line:ARRAY
rle_offset += 1;
invariant!(rle_offset <= rle_block_out.len());
}
*blockhash_len_out = len as u8;
invariant!(len <= blockhash_out.len()); // grcov-excl-br-line:ARRAY
blockhash_out[len..].fill(0);
}
}
/// Expand a normalized block hash to a raw form using RLE encodings.
#[inline]
pub(crate) fn expand_block_hash_using_rle<const SZ_BH: usize, const SZ_RLE: usize>(
blockhash_out: &mut [u8; SZ_BH],
blockhash_len_out: &mut u8,
blockhash_in: &[u8; SZ_BH],
rle_block_in: &[u8; SZ_RLE],
blockhash_len_in: u8
)
where
BlockHashSize<SZ_BH>: ConstrainedBlockHashSize,
ReconstructionBlockSize<SZ_BH, SZ_RLE>: ConstrainedReconstructionBlockSize
{
optionally_unsafe! {
let mut offset_src = 0usize;
let mut offset_dst = 0usize;
let mut len_out = blockhash_len_in;
for rle in rle_block_in {
// Decode position and length
let (pos, len) = rle_encoding::decode(*rle);
if pos == 0 {
break;
}
let pos = pos as usize;
len_out += len;
let len = len as usize;
// Copy as is
let copy_len = pos - offset_src;
invariant!(offset_src < blockhash_in.len());
invariant!(offset_src + copy_len <= blockhash_in.len());
invariant!(offset_src <= offset_src + copy_len);
invariant!(offset_dst < blockhash_out.len());
invariant!(offset_dst + copy_len <= blockhash_out.len());
invariant!(offset_dst <= offset_dst + copy_len);
blockhash_out[offset_dst..offset_dst+copy_len].clone_from_slice(
&blockhash_in[offset_src..offset_src+copy_len]
); // grcov-excl-br-line:ARRAY
// Copy with duplication
invariant!(pos < blockhash_in.len());
let lastch = blockhash_in[pos]; // grcov-excl-br-line:ARRAY
invariant!(offset_dst + copy_len < blockhash_out.len());
invariant!(offset_dst + copy_len + len <= blockhash_out.len());
blockhash_out[offset_dst+copy_len..offset_dst+copy_len+len].fill(lastch); // grcov-excl-br-line:ARRAY
// Update next offset
offset_src += copy_len;
offset_dst += copy_len + len;
}
// Copy as is (tail)
let copy_len = len_out as usize - offset_dst;
invariant!(offset_src < blockhash_in.len());
invariant!(offset_src + copy_len <= blockhash_in.len());
invariant!(offset_src <= offset_src + copy_len);
invariant!(offset_dst < blockhash_out.len());
invariant!(offset_dst + copy_len <= blockhash_out.len());
invariant!(offset_dst <= offset_dst + copy_len);
blockhash_out[offset_dst..offset_dst+copy_len].clone_from_slice(
&blockhash_in[offset_src..offset_src+copy_len]
); // grcov-excl-br-line:ARRAY
// Finalize
invariant!(offset_dst + copy_len <= blockhash_out.len());
blockhash_out[offset_dst+copy_len..].fill(0); // grcov-excl-br-line:ARRAY
*blockhash_len_out = len_out;
}
}
/// Expand a normalized block hash to a raw form using RLE encodings.
pub(crate) fn is_valid_rle_block_for_block_hash<const SZ_BH: usize, const SZ_RLE: usize>(
blockhash: &[u8; SZ_BH],
rle_block: &[u8; SZ_RLE],
blockhash_len: u8
) -> bool
where
BlockHashSize<SZ_BH>: ConstrainedBlockHashSize,
ReconstructionBlockSize<SZ_BH, SZ_RLE>: ConstrainedReconstructionBlockSize
{
let mut expanded_len = blockhash_len as u32;
let mut zero_expected = false;
let mut prev_pos = 0u8;
let mut prev_len = 0u8;
for rle in rle_block {
if unlikely(*rle != 0 && zero_expected) {
// Non-zero byte after null-terminated encoding.
return false;
}
if *rle == 0 {
// Null terminator or later.
zero_expected = true;
continue;
}
// Decode position and length
let (pos, len) = rle_encoding::decode(*rle);
// Check position
if unlikely(
pos < block_hash::MAX_SEQUENCE_SIZE as u8 - 1 || pos >= blockhash_len || pos < prev_pos
) {
return false;
}
if prev_pos == pos {
// For extension with the same position, check canonicality.
if unlikely(prev_len != rle_encoding::MAX_RUN_LENGTH as u8) {
return false;
}
}
else {
// For new sequence, check if corresponding block hash makes
// identical character sequence.
let end = pos as usize;
let start = end - (block_hash::MAX_SEQUENCE_SIZE - 1);
optionally_unsafe! {
invariant!(start < blockhash.len());
invariant!(end < blockhash.len());
#[allow(clippy::int_plus_one)]
{
invariant!(start + 1 <= end);
}
}
let ch = blockhash[start]; // grcov-excl-br-line:ARRAY
if unlikely(
blockhash[start+1..=end] // grcov-excl-br-line:ARRAY
.iter().any(|x| *x != ch)
)
{
return false;
}
}
// Update the state.
prev_pos = pos;
prev_len = len;
expanded_len += len as u32;
}
if unlikely(expanded_len as usize > SZ_BH) {
return false;
}
true
}
}
/// An efficient compressed fuzzy hash representation, containing both
/// normalized and raw block hash contents.
///
/// This struct contains a normalized [fuzzy hash object](FuzzyHashData) and
/// opaque data to perform "reverse normalization" afterwards.
///
/// On the current design, it allows compression ratio of about 5 / 8
/// (compared to two fuzzy hash objects, one normalized and another raw).
///
/// With this, you can compare many fuzzy hashes efficiently while preserving
/// the original string representation without requesting too much memory.
///
/// Some methods accept [`AsRef`] to the normalized [`FuzzyHashData`].
/// On such cases, it is possible to pass this object directly
/// (e.g. [`FuzzyHashCompareTarget::compare()`](crate::compare::FuzzyHashCompareTarget::compare())).
///
/// # Ordering
///
/// Sorting objects of this type will result in the following order.
///
/// * Two equivalent [`FuzzyHashDualData`] objects are considered equal
/// (and the underlying sorting algorithm decides ordering of equivalent
/// objects).
/// * Two different [`FuzzyHashDualData`] objects with different normalized
/// [`FuzzyHashData`] objects (inside) will be ordered as the same order as
/// the underlying [`FuzzyHashData`].
/// * Two different [`FuzzyHashDualData`] objects with the same normalized
/// [`FuzzyHashData`] objects (inside) will be ordered
/// in an implementation-defined manner.
///
/// The implementation-defined order is not currently guaranteed to be stable.
/// For instance, different versions of this crate may order them differently.
/// However, it is guaranteed deterministic so that you can expect the same
/// order in the same version (and the same configuration) of this crate.
///
/// # Safety
///
/// Generic parameters of this type should not be considered stable because some
/// generic parameters are just there because of the current restrictions of
/// Rust's constant generics (that will be resolved after the feature
/// `generic_const_exprs` is stabilized).
///
/// **Do not** use [`FuzzyHashDualData`] directly.
///
/// Instead, use instantiations of this generic type:
/// * [`DualFuzzyHash`] (will be sufficient on most cases)
/// * [`LongDualFuzzyHash`]
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "alloc")]
/// # {
/// // Requires the "alloc" feature to use `to_string()` method (default enabled).
/// use ssdeep::{DualFuzzyHash, FuzzyHash, RawFuzzyHash};
///
/// let hash_str_raw = "12288:+ySwl5P+C5IxJ845HYV5sxOH/cccccccei:+Klhav84a5sxJ";
/// let hash_str_norm = "12288:+ySwl5P+C5IxJ845HYV5sxOH/cccei:+Klhav84a5sxJ";
///
/// let dual_hash: DualFuzzyHash = str::parse(hash_str_raw).unwrap();
///
/// // This object can effectively contain both
/// // normalized and raw fuzzy hash representations.
/// assert_eq!(dual_hash.to_raw_form().to_string(), hash_str_raw);
/// assert_eq!(dual_hash.to_normalized().to_string(), hash_str_norm);
///
/// let another_hash: FuzzyHash = str::parse(
/// "12288:+yUwldx+C5IxJ845HYV5sxOH/cccccccex:+glvav84a5sxK"
/// ).unwrap();
///
/// // You can directly compare a DualFuzzyHash against a FuzzyHash.
/// //
/// // This is almost as fast as comparison between two FuzzyHash objects
/// // because the native representation inside DualFuzzyHash
/// // is a FuzzyHash object.
/// assert_eq!(another_hash.compare(dual_hash), 88);
///
/// // But DualFuzzyHash is not a drop-in replacement of FuzzyHash.
/// // You need to use `as_normalized()` to compare a FuzzyHash against
/// // a DualFuzzyHash (direct comparison may be provided on the later version).
/// assert_eq!(dual_hash.as_normalized().compare(&another_hash), 88);
/// # }
/// ```
#[repr(align(8))]
#[derive(Copy, Clone)]
pub struct FuzzyHashDualData<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
/// RLE block 1 for reverse normalization of
/// [block hash 1](crate::hash::FuzzyHashData::blockhash1).
///
/// See [`rle_encoding`] for encoding details.
rle_block1: [u8; C1],
/// RLE block 2 for reverse normalization of
/// [block hash 2](crate::hash::FuzzyHashData::blockhash2).
///
/// See [`rle_encoding`] for encoding details.
rle_block2: [u8; C2],
/// A normalized fuzzy hash object for comparison and the base storage
/// before RLE-based decompression.
norm_hash: fuzzy_norm_type!(S1, S2)
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize> FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
/// The maximum size of the block hash 1.
///
/// This value is the same as the
/// [underlying fuzzy hash type](FuzzyHashData::MAX_BLOCK_HASH_SIZE_1).
pub const MAX_BLOCK_HASH_SIZE_1: usize = <fuzzy_norm_type!(S1, S2)>::MAX_BLOCK_HASH_SIZE_1;
/// The maximum size of the block hash 2.
///
/// This value is the same as the
/// [underlying fuzzy hash type](FuzzyHashData::MAX_BLOCK_HASH_SIZE_2).
pub const MAX_BLOCK_HASH_SIZE_2: usize = <fuzzy_norm_type!(S1, S2)>::MAX_BLOCK_HASH_SIZE_2;
/// The number of RLE block entries in the block hash 1.
#[allow(dead_code)]
const RLE_BLOCK_SIZE_1: usize = C1;
/// The number of RLE block entries in the block hash 2.
#[allow(dead_code)]
const RLE_BLOCK_SIZE_2: usize = C2;
/// Denotes whether the fuzzy type only contains a normalized form.
///
/// In this type, it is always [`false`].
pub const IS_NORMALIZED_FORM: bool = false;
/// Denotes whether the fuzzy type can contain a non-truncated fuzzy hash.
///
/// This value is the same as the
/// [underlying fuzzy hash type](FuzzyHashData::IS_LONG_FORM).
pub const IS_LONG_FORM: bool = <fuzzy_norm_type!(S1, S2)>::IS_LONG_FORM;
/// The maximum length in the string representation.
///
/// This value is the same as the
/// [underlying fuzzy hash type](FuzzyHashData::MAX_LEN_IN_STR).
pub const MAX_LEN_IN_STR: usize = <fuzzy_norm_type!(S1, S2)>::MAX_LEN_IN_STR;
/// Creates a new fuzzy hash object with empty contents.
///
/// This is equivalent to the fuzzy hash string `3::`.
pub fn new() -> Self {
Self {
rle_block1: [0u8; C1],
rle_block2: [0u8; C2],
norm_hash: FuzzyHashData::new()
}
}
/// Initialize the object from a raw fuzzy hash.
pub fn init_from_raw_form(&mut self, hash: &fuzzy_raw_type!(S1, S2)) {
self.norm_hash.log_blocksize = hash.log_blocksize;
algorithms::compress_block_hash_with_rle(
&mut self.norm_hash.blockhash1,
&mut self.rle_block1,
&mut self.norm_hash.len_blockhash1,
&hash.blockhash1,
hash.len_blockhash1
);
algorithms::compress_block_hash_with_rle(
&mut self.norm_hash.blockhash2,
&mut self.rle_block2,
&mut self.norm_hash.len_blockhash2,
&hash.blockhash2,
hash.len_blockhash2
);
}
/// The internal implementation of [`Self::init_from_raw_form_internals_raw_unchecked()`].
fn init_from_raw_form_internals_raw_internal(
&mut self,
log_block_size: u8,
block_hash_1: &[u8; S1],
block_hash_2: &[u8; S2],
block_hash_1_len: u8,
block_hash_2_len: u8
) {
debug_assert!(block_size::is_log_valid(log_block_size));
debug_assert!(block_hash_1_len as usize <= S1);
debug_assert!(block_hash_2_len as usize <= S2);
debug_assert!(block_hash_1[..block_hash_1_len as usize].iter().all(|&x| x < block_hash::ALPHABET_SIZE as u8));
debug_assert!(block_hash_2[..block_hash_2_len as usize].iter().all(|&x| x < block_hash::ALPHABET_SIZE as u8));
debug_assert!(block_hash_1[block_hash_1_len as usize..].iter().all(|&x| x == 0));
debug_assert!(block_hash_2[block_hash_2_len as usize..].iter().all(|&x| x == 0));
self.norm_hash.log_blocksize = log_block_size;
algorithms::compress_block_hash_with_rle(
&mut self.norm_hash.blockhash1,
&mut self.rle_block1,
&mut self.norm_hash.len_blockhash1,
block_hash_1,
block_hash_1_len
);
algorithms::compress_block_hash_with_rle(
&mut self.norm_hash.blockhash2,
&mut self.rle_block2,
&mut self.norm_hash.len_blockhash2,
block_hash_2,
block_hash_2_len
);
}
/// Initialize the fuzzy hash object with internal contents (raw).
/// The input is of the raw form.
///
/// # Safety
///
/// * Valid range of `block_hash_1` and `block_hash_2` must consist of
/// valid Base64 indices.
/// * Invalid range of `block_hash_1` and `block_hash_2` must be
/// filled with zeroes.
/// * `block_hash_1_len` and `block_hash_2_len` must be valid.
/// * `log_block_size` must hold a valid *base-2 logarithm* form
/// of a block size.
///
/// If they are not satisfied, the resulting object will be corrupted.
#[cfg(feature = "unchecked")]
#[allow(unsafe_code)]
#[inline(always)]
pub unsafe fn init_from_raw_form_internals_raw_unchecked(
&mut self,
log_block_size: u8,
block_hash_1: &[u8; S1],
block_hash_2: &[u8; S2],
block_hash_1_len: u8,
block_hash_2_len: u8
) {
self.init_from_raw_form_internals_raw_internal(log_block_size, block_hash_1, block_hash_2, block_hash_1_len, block_hash_2_len)
}
/// Initialize the fuzzy hash object with internal contents (raw).
/// The input is of the raw form.
///
/// # Usage Constraints
///
/// * Valid range of `block_hash_1` and `block_hash_2` must consist of
/// valid Base64 indices.
/// * Invalid range of `block_hash_1` and `block_hash_2` must be
/// filled with zeroes.
/// * `block_hash_1_len` and `block_hash_2_len` must be valid.
/// * `log_block_size` must hold a valid *base-2 logarithm* form
/// of a block size.
#[inline]
pub fn init_from_raw_form_internals_raw(
&mut self,
log_block_size: u8,
block_hash_1: &[u8; S1],
block_hash_2: &[u8; S2],
block_hash_1_len: u8,
block_hash_2_len: u8
) {
assert!(block_size::is_log_valid(log_block_size));
assert!(block_hash_1_len as usize <= S1);
assert!(block_hash_2_len as usize <= S2);
assert!(block_hash_1[..block_hash_1_len as usize].iter().all(|&x| x < block_hash::ALPHABET_SIZE as u8));
assert!(block_hash_2[..block_hash_2_len as usize].iter().all(|&x| x < block_hash::ALPHABET_SIZE as u8));
assert!(block_hash_1[block_hash_1_len as usize..].iter().all(|&x| x == 0));
assert!(block_hash_2[block_hash_2_len as usize..].iter().all(|&x| x == 0));
self.init_from_raw_form_internals_raw_internal(
log_block_size,
block_hash_1,
block_hash_2,
block_hash_1_len,
block_hash_2_len
);
}
/// The internal implementation of [`Self::new_from_raw_form_internals_raw_unchecked()`].
#[allow(dead_code)]
fn new_from_raw_form_internals_raw_internal(
log_block_size: u8,
block_hash_1: &[u8; S1],
block_hash_2: &[u8; S2],
block_hash_1_len: u8,
block_hash_2_len: u8
) -> Self
{
let mut hash = Self::new();
hash.init_from_raw_form_internals_raw_internal(log_block_size, block_hash_1, block_hash_2, block_hash_1_len, block_hash_2_len);
hash
}
/// Creates a new fuzzy hash object with internal contents (raw).
/// The input is of the raw form.
///
/// # Safety
///
/// * Valid range of `block_hash_1` and `block_hash_2` must consist of
/// valid Base64 indices.
/// * Invalid range of `block_hash_1` and `block_hash_2` must be
/// filled with zeroes.
/// * `block_hash_1_len` and `block_hash_2_len` must be valid.
/// * `log_block_size` must hold a valid *base-2 logarithm* form
/// of a block size.
///
/// If they are not satisfied, the resulting object will be corrupted.
#[cfg(feature = "unchecked")]
#[allow(unsafe_code)]
#[inline(always)]
pub unsafe fn new_from_raw_form_internals_raw_unchecked(
log_block_size: u8,
block_hash_1: &[u8; S1],
block_hash_2: &[u8; S2],
block_hash_1_len: u8,
block_hash_2_len: u8
) -> Self
{
Self::new_from_raw_form_internals_raw_internal(log_block_size, block_hash_1, block_hash_2, block_hash_1_len, block_hash_2_len)
}
/// Creates a new fuzzy hash object with internal contents (raw).
/// The input is of the raw form.
///
/// # Usage Constraints
///
/// * Valid range of `block_hash_1` and `block_hash_2` must consist of
/// valid Base64 indices.
/// * Invalid range of `block_hash_1` and `block_hash_2` must be
/// filled with zeroes.
/// * `block_hash_1_len` and `block_hash_2_len` must be valid.
/// * `log_block_size` must hold a valid *base-2 logarithm* form
/// of a block size.
#[inline]
pub fn new_from_raw_form_internals_raw(
log_block_size: u8,
block_hash_1: &[u8; S1],
block_hash_2: &[u8; S2],
block_hash_1_len: u8,
block_hash_2_len: u8
) -> Self
{
let mut hash = Self::new();
hash.init_from_raw_form_internals_raw(log_block_size, block_hash_1, block_hash_2, block_hash_1_len, block_hash_2_len);
hash
}
/// The *base-2 logarithm* form of the block size.
///
/// See also: ["Block Size" section of `FuzzyHashData`](crate::hash::FuzzyHashData#block-size)
#[inline(always)]
pub fn log_block_size(&self) -> u8 { self.norm_hash.log_blocksize }
/// The block size of the fuzzy hash.
#[inline]
pub fn block_size(&self) -> u32 {
block_size::from_log_internal(self.norm_hash.log_blocksize)
}
/// A reference to the normalized fuzzy hash.
///
/// To note, this operation should be fast enough because this type
/// contains this object directly.
#[inline(always)]
pub fn as_normalized(&self) -> &fuzzy_norm_type!(S1, S2) {
&self.norm_hash
}
/// A reference to the normalized fuzzy hash.
///
/// This method is superseded by [`as_normalized()`](Self::as_normalized()).
///
/// This method will be removed on the next major release.
#[deprecated]
#[inline(always)]
pub fn as_ref_normalized(&self) -> &fuzzy_norm_type!(S1, S2) {
self.as_normalized()
}
/// Constructs an object from a raw fuzzy hash.
pub fn from_raw_form(hash: &fuzzy_raw_type!(S1, S2)) -> Self {
let mut dual_hash = FuzzyHashDualData::new();
dual_hash.init_from_raw_form(hash);
dual_hash
}
/// Constructs an object from a normalized fuzzy hash.
pub fn from_normalized(hash: &fuzzy_norm_type!(S1, S2)) -> Self {
Self {
rle_block1: [0u8; C1],
rle_block2: [0u8; C2],
norm_hash: *hash
}
}
/// Decompresses a raw variant of the fuzzy hash and stores into
/// an existing object.
pub fn into_mut_raw_form(&self, hash: &mut fuzzy_raw_type!(S1, S2)) {
hash.log_blocksize = self.norm_hash.log_blocksize;
algorithms::expand_block_hash_using_rle(
&mut hash.blockhash1,
&mut hash.len_blockhash1,
&self.norm_hash.blockhash1,
&self.rle_block1,
self.norm_hash.len_blockhash1
);
algorithms::expand_block_hash_using_rle(
&mut hash.blockhash2,
&mut hash.len_blockhash2,
&self.norm_hash.blockhash2,
&self.rle_block2,
self.norm_hash.len_blockhash2
);
}
/// Decompresses and generates a raw variant of the fuzzy hash.
///
/// Based on the normalized fuzzy hash representation and the "reverse
/// normalization" data, this method generates the original, a raw variant
/// of the fuzzy hash.
pub fn to_raw_form(&self) -> fuzzy_raw_type!(S1, S2) {
let mut hash = FuzzyHashData::new();
self.into_mut_raw_form(&mut hash);
hash
}
/// Returns the clone of the normalized fuzzy hash.
///
/// Where possible, [`as_normalized()`](Self::as_normalized()) or
/// [`AsRef::as_ref()`] should be used instead.
#[inline(always)]
pub fn to_normalized(&self) -> fuzzy_norm_type!(S1, S2) {
self.norm_hash
}
/// Converts the fuzzy hash to the string (normalized form).
///
/// This method returns the string corresponding
/// the normalized form.
#[cfg(feature = "alloc")]
pub fn to_normalized_string(&self) -> String {
self.norm_hash.to_string()
}
/// Converts the fuzzy hash to the string (raw form).
///
/// This method returns the string corresponding the raw
/// (non-normalized) form.
#[cfg(feature = "alloc")]
pub fn to_raw_form_string(&self) -> String {
self.to_raw_form().to_string()
}
/// The internal implementation of [`from_bytes_with_last_index()`](Self::from_bytes_with_last_index()).
#[inline(always)]
fn from_bytes_with_last_index_internal(str: &[u8], index: &mut usize)
-> Result<Self, ParseError>
{
use crate::hash::algorithms;
let mut fuzzy = Self::new();
// Parse fuzzy hash
let mut i = 0;
match algorithms::parse_block_size_from_bytes(str, &mut i) {
Ok(bs) => {
fuzzy.norm_hash.log_blocksize = block_size::log_from_valid_internal(bs);
}
Err(err) => { return Err(err); }
}
let mut rle_offset = 0;
match algorithms::parse_block_hash_from_bytes::<_, S1, true>(
&mut fuzzy.norm_hash.blockhash1,
&mut fuzzy.norm_hash.len_blockhash1,
str, &mut i,
|pos, len| {
optionally_unsafe! {
let base_offset = pos + block_hash::MAX_SEQUENCE_SIZE - 1;
let seq = (len - block_hash::MAX_SEQUENCE_SIZE) - 1;
let seq_fill_size = seq / rle_encoding::MAX_RUN_LENGTH;
invariant!(rle_offset < fuzzy.rle_block1.len());
invariant!(rle_offset + seq_fill_size <= fuzzy.rle_block1.len());
invariant!(rle_offset <= rle_offset + seq_fill_size);
fuzzy.rle_block1[rle_offset..rle_offset+seq_fill_size]
.fill(rle_encoding::encode(base_offset as u8, rle_encoding::MAX_RUN_LENGTH as u8)); // grcov-excl-br-line:ARRAY
rle_offset += seq_fill_size;
invariant!(rle_offset < fuzzy.rle_block1.len());
fuzzy.rle_block1[rle_offset] =
rle_encoding::encode(base_offset as u8, (seq % rle_encoding::MAX_RUN_LENGTH) as u8 + 1); // grcov-excl-br-line:ARRAY
rle_offset += 1;
invariant!(rle_offset <= fuzzy.rle_block1.len());
}
}
) {
// End of BH1: Only colon is acceptable as the separator between BH1:BH2.
BlockHashParseState::MetColon => { }
BlockHashParseState::MetComma => {
return Err(ParseError(
ParseErrorKind::UnexpectedCharacter,
ParseErrorOrigin::BlockHash1, i - 1
));
}
BlockHashParseState::Base64Error => {
return Err(ParseError(
ParseErrorKind::UnexpectedCharacter,
ParseErrorOrigin::BlockHash1, i
));
}
BlockHashParseState::MetEndOfString => {
return Err(ParseError(
ParseErrorKind::UnexpectedEndOfString,
ParseErrorOrigin::BlockHash1, i
));
}
BlockHashParseState::OverflowError => {
return Err(ParseError(
ParseErrorKind::BlockHashIsTooLong,
ParseErrorOrigin::BlockHash1, i
));
}
}
let mut rle_offset = 0;
match algorithms::parse_block_hash_from_bytes::<_, S2, true>(
&mut fuzzy.norm_hash.blockhash2,
&mut fuzzy.norm_hash.len_blockhash2,
str, &mut i,
|pos, len| {
optionally_unsafe! {
let base_offset = pos + block_hash::MAX_SEQUENCE_SIZE - 1;
let seq = (len - block_hash::MAX_SEQUENCE_SIZE) - 1;
let seq_fill_size = seq / rle_encoding::MAX_RUN_LENGTH;
invariant!(rle_offset < fuzzy.rle_block2.len());
invariant!(rle_offset + seq_fill_size <= fuzzy.rle_block2.len());
invariant!(rle_offset <= rle_offset + seq_fill_size);
fuzzy.rle_block2[rle_offset..rle_offset+seq_fill_size]
.fill(rle_encoding::encode(base_offset as u8, rle_encoding::MAX_RUN_LENGTH as u8)); // grcov-excl-br-line:ARRAY
rle_offset += seq_fill_size;
invariant!(rle_offset < fuzzy.rle_block2.len());
fuzzy.rle_block2[rle_offset] =
rle_encoding::encode(base_offset as u8, (seq % rle_encoding::MAX_RUN_LENGTH) as u8 + 1); // grcov-excl-br-line:ARRAY
rle_offset += 1;
invariant!(rle_offset <= fuzzy.rle_block2.len());
}
}
) {
// End of BH2: Optional comma or end-of-string is expected.
BlockHashParseState::MetComma => { *index = i - 1; }
BlockHashParseState::MetEndOfString => { *index = i; }
BlockHashParseState::MetColon => {
return Err(ParseError(
ParseErrorKind::UnexpectedCharacter,
ParseErrorOrigin::BlockHash2, i - 1
));
}
BlockHashParseState::Base64Error => {
return Err(ParseError(
ParseErrorKind::UnexpectedCharacter,
ParseErrorOrigin::BlockHash2, i
));
}
BlockHashParseState::OverflowError => {
return Err(ParseError(
ParseErrorKind::BlockHashIsTooLong,
ParseErrorOrigin::BlockHash2, i
));
}
}
Ok(fuzzy)
}
/// Parse a fuzzy hash from given bytes (a slice of [`u8`])
/// of a string representation.
///
/// If the parser succeeds, it also updates the `index` argument to the
/// first non-used index to construct the fuzzy hash, which is that of
/// either the end of the string or the character `','` to separate the rest
/// of the fuzzy hash and the file name field.
///
/// If the parser fails, `index` is not updated.
pub fn from_bytes_with_last_index(str: &[u8], index: &mut usize)
-> Result<Self, ParseError>
{
Self::from_bytes_with_last_index_internal(str, index)
}
/// Parse a fuzzy hash from given bytes (a slice of [`u8`])
/// of a string representation.
pub fn from_bytes(str: &[u8]) -> Result<Self, ParseError> {
Self::from_bytes_with_last_index_internal(str, &mut 0usize)
}
/// Normalize the fuzzy hash in place.
///
/// After calling this method, `self` will be normalized.
///
/// In this implementation, it clears all "reverse normalization" data.
///
/// See also: ["Normalization" section of `FuzzyHashData`](FuzzyHashData#normalization)
pub fn normalize_in_place(&mut self) {
self.rle_block1 = [0u8; C1];
self.rle_block2 = [0u8; C2];
}
/// Returns whether the dual fuzzy hash is normalized.
pub fn is_normalized(&self) -> bool {
self.rle_block1.iter().all(|&x| x == 0) &&
self.rle_block2.iter().all(|&x| x == 0)
}
/// Performs full validity checking of the internal structure.
///
/// The primary purpose of this is debugging and it should always
/// return [`true`] unless...
///
/// * There is a bug in this crate, corrupting this structure or
/// * A memory corruption is occurred somewhere else.
///
/// Because of its purpose, this method is not designed to be fast.
///
/// Note that, despite that it is only relevant to users when the
/// `unchecked` feature is enabled but made public without any features
/// because this method is not *unsafe* or *unchecked* in any way.
pub fn is_valid(&self) -> bool {
self.norm_hash.is_valid() &&
algorithms::is_valid_rle_block_for_block_hash(
&self.norm_hash.blockhash1,
&self.rle_block1,
self.norm_hash.len_blockhash1
) &&
algorithms::is_valid_rle_block_for_block_hash(
&self.norm_hash.blockhash2,
&self.rle_block2,
self.norm_hash.len_blockhash2
)
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
AsRef<fuzzy_norm_type!(S1, S2)> for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
#[inline(always)]
fn as_ref(&self) -> &fuzzy_norm_type!(S1, S2) {
&self.norm_hash
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
Default for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
fn default() -> Self {
Self::new()
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
PartialEq for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
fn eq(&self, other: &Self) -> bool {
self.norm_hash == other.norm_hash &&
self.rle_block1 == other.rle_block1 &&
self.rle_block2 == other.rle_block2
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
Eq for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
core::hash::Hash for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
#[inline]
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
self.norm_hash.hash(state);
state.write(&self.rle_block1);
state.write(&self.rle_block2);
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
Ord for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
#[inline]
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
(
self.norm_hash,
self.rle_block1,
self.rle_block2
).cmp(&(
other.norm_hash,
other.rle_block1,
other.rle_block2
))
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
PartialOrd for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
core::fmt::Debug for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
/// The type to print an RLE encoded byte.
struct DebugBuilderForRLEBlockEntry(u8);
/// The type to print a valid RLE block.
struct DebugBuilderForValidRLEBlock<'a, const N: usize> {
block: &'a [u8; N]
}
/// The type to print an invalid RLE block.
struct DebugBuilderForInvalidRLEBlock<'a, const N: usize> {
block: &'a [u8; N]
}
impl<'a, const N: usize> DebugBuilderForValidRLEBlock<'a, N> {
pub fn new(rle_block: &'a [u8; N]) -> Self {
Self { block: rle_block }
}
}
impl<'a, const N: usize> DebugBuilderForInvalidRLEBlock<'a, N> {
pub fn new(rle_block: &'a [u8; N]) -> Self {
Self { block: rle_block }
}
}
impl core::fmt::Debug for DebugBuilderForRLEBlockEntry {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
if self.0 != 0 {
let (pos, len) = rle_encoding::decode(self.0);
f.debug_tuple("RLE")
.field(&pos).field(&len)
.finish()
}
else {
f.debug_tuple("RLENull").finish()
}
}
}
impl<'a, const N: usize>
core::fmt::Debug for DebugBuilderForValidRLEBlock<'a, N>
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_list()
.entries(self.block.iter().cloned().filter(|x| *x != 0)
.map(DebugBuilderForRLEBlockEntry))
.finish()
}
}
impl<'a, const N: usize>
core::fmt::Debug for DebugBuilderForInvalidRLEBlock<'a, N>
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
// Don't filter zeroes when invalid,
// unlike DebugBuilderForValidRLEBlock above.
f.debug_list()
.entries(self.block.iter().cloned().map(DebugBuilderForRLEBlockEntry))
.finish()
}
}
// It's for debug purposes and do the full checking.
if self.is_valid() {
// Table lookup is safe. All entries are `0 <= x < 64`.
let buffer1 = self.norm_hash.blockhash1.map(|x| { BASE64_TABLE_U8[x as usize] }); // grcov-excl-br-line:ARRAY
let buffer2 = self.norm_hash.blockhash2.map(|x| { BASE64_TABLE_U8[x as usize] }); // grcov-excl-br-line:ARRAY
f.debug_struct("FuzzyHashDualData")
.field("LONG", &(S2 == block_hash::FULL_SIZE))
.field("block_size", &block_size::from_log_internal(self.norm_hash.log_blocksize))
.field("blockhash1", &core::str::from_utf8(&buffer1[..self.norm_hash.len_blockhash1 as usize]).unwrap())
.field("blockhash2", &core::str::from_utf8(&buffer2[..self.norm_hash.len_blockhash2 as usize]).unwrap())
.field("rle_block1", &(DebugBuilderForValidRLEBlock::new(&self.rle_block1)))
.field("rle_block2", &(DebugBuilderForValidRLEBlock::new(&self.rle_block2)))
.finish()
}
else {
f.debug_struct("FuzzyHashDualData")
.field("ILL_FORMED", &true)
.field("LONG", &(S2 == block_hash::FULL_SIZE))
.field("log_blocksize", &self.norm_hash.log_blocksize)
.field("len_blockhash1", &self.norm_hash.len_blockhash1)
.field("len_blockhash2", &self.norm_hash.len_blockhash2)
.field("blockhash1", &self.norm_hash.blockhash1)
.field("blockhash2", &self.norm_hash.blockhash2)
.field("rle_block1", &(DebugBuilderForInvalidRLEBlock::new(&self.rle_block1)))
.field("rle_block2", &(DebugBuilderForInvalidRLEBlock::new(&self.rle_block2)))
.finish()
}
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
core::fmt::Display for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "{{{}|{}}}", self.norm_hash, self.to_raw_form())
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
core::str::FromStr for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
type Err = ParseError;
#[inline(always)]
fn from_str(s: &str) -> Result<Self, Self::Err> {
Self::from_bytes(s.as_bytes())
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
core::convert::From<fuzzy_norm_type!(S1, S2)> for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
#[inline]
fn from(value: fuzzy_norm_type!(S1, S2)) -> Self {
Self::from_normalized(&value)
}
}
impl<const S1: usize, const S2: usize, const C1: usize, const C2: usize>
core::convert::From<fuzzy_raw_type!(S1, S2)> for FuzzyHashDualData<S1, S2, C1, C2>
where
BlockHashSize<S1>: ConstrainedBlockHashSize,
BlockHashSize<S2>: ConstrainedBlockHashSize,
BlockHashSizes<S1, S2>: ConstrainedBlockHashSizes,
ReconstructionBlockSize<S1, C1>: ConstrainedReconstructionBlockSize,
ReconstructionBlockSize<S2, C2>: ConstrainedReconstructionBlockSize
{
#[inline]
fn from(value: fuzzy_raw_type!(S1, S2)) -> Self {
Self::from_raw_form(&value)
}
}
/// Regular (truncated) dual fuzzy hash type which contains both normalized
/// and raw contents.
///
/// This type effectively contains the data equivalent to those two objects:
///
/// * [`FuzzyHash`](crate::hash::FuzzyHash) (native)
/// * [`RawFuzzyHash`](crate::hash::RawFuzzyHash) (compressed)
///
/// See also: [`FuzzyHashDualData`]
pub type DualFuzzyHash = FuzzyHashDualData<
{block_hash::FULL_SIZE},
{block_hash::HALF_SIZE},
{block_hash::FULL_SIZE / 4},
{block_hash::HALF_SIZE / 4}
>;
/// Long (non-truncated) dual fuzzy hash type which contains both normalized
/// and raw contents.
///
/// This type effectively contains the data equivalent to those two objects:
///
/// * [`LongFuzzyHash`](crate::hash::LongFuzzyHash) (native)
/// * [`LongRawFuzzyHash`](crate::hash::LongRawFuzzyHash) (compressed)
///
/// See also: [`FuzzyHashDualData`]
pub type LongDualFuzzyHash = FuzzyHashDualData<
{block_hash::FULL_SIZE},
{block_hash::FULL_SIZE},
{block_hash::FULL_SIZE / 4},
{block_hash::FULL_SIZE / 4}
>;