1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
//! This crate provides a basic implementation of the Unicode Collation Algorithm. There is really
//! just one function, `collate`, and a few options that can be passed to it. But the implementation
//! conforms to the standard and allows for the use of the CLDR root collation order; so it may
//! indeed be useful, even in this early stage of development.

#![warn(clippy::pedantic, clippy::cargo)]
#![deny(missing_docs)]

use std::cmp::Ordering;
use std::collections::HashMap;

use once_cell::sync::Lazy;
use serde::Deserialize;
use unicode_canonical_combining_class::get_canonical_combining_class as get_ccc;
use unicode_normalization::UnicodeNormalization;

//
// Structs etc.
//

/// This struct specifies the options to be passed to the `collate` function. You can choose between
/// two tables (DUCET and CLDR root), and between two approaches to the handling of variable-weight
/// characters ("non-ignorable" and "shifted"). The default, and a good starting point for Unicode
/// collation, is to use the CLDR table with the "shifted" approach.
pub struct CollationOptions {
    /// The table of weights to be used (currently either DUCET or CLDR)
    pub keys_source: KeysSource,
    /// The approach to handling variable-weight characters ("non-ignorable" or "shifted"). For our
    /// purposes, `shifting` is either true (recommended) or false.
    pub shifting: bool,
}

impl Default for CollationOptions {
    fn default() -> Self {
        Self {
            keys_source: KeysSource::Cldr,
            shifting: true,
        }
    }
}

/// This enum provides for a choice of which table of character weights to use.
#[derive(PartialEq, Eq)]
pub enum KeysSource {
    /// The table associated with the CLDR root collation order (recommended)
    Cldr,
    /// The default table for the Unicode Collation Algorithm
    Ducet,
}

#[derive(Deserialize)]
struct Weights {
    variable: bool,
    primary: u16,
    secondary: u16,
    tertiary: u16,
}

//
// Static/const
//

static FCD: Lazy<HashMap<u32, u16>> = Lazy::new(|| {
    let data = include_bytes!("bincode/fcd");
    let decoded: HashMap<u32, u16> = bincode::deserialize(data).unwrap();
    decoded
});

static SING: Lazy<HashMap<u32, Vec<Weights>>> = Lazy::new(|| {
    let data = include_bytes!("bincode/singles");
    let decoded: HashMap<u32, Vec<Weights>> = bincode::deserialize(data).unwrap();
    decoded
});

static MULT: Lazy<HashMap<Vec<u32>, Vec<Weights>>> = Lazy::new(|| {
    let data = include_bytes!("bincode/multis");
    let decoded: HashMap<Vec<u32>, Vec<Weights>> = bincode::deserialize(data).unwrap();
    decoded
});

static SING_CLDR: Lazy<HashMap<u32, Vec<Weights>>> = Lazy::new(|| {
    let data = include_bytes!("bincode/singles_cldr");
    let decoded: HashMap<u32, Vec<Weights>> = bincode::deserialize(data).unwrap();
    decoded
});

static MULT_CLDR: Lazy<HashMap<Vec<u32>, Vec<Weights>>> = Lazy::new(|| {
    let data = include_bytes!("bincode/multis_cldr");
    let decoded: HashMap<Vec<u32>, Vec<Weights>> = bincode::deserialize(data).unwrap();
    decoded
});

const NEED_THREE: [u32; 4] = [3_270, 3_545, 4_018, 4_019];

const NEED_TWO: [u32; 59] = [
    76, 108, 1_048, 1_080, 1_575, 1_608, 1_610, 2_503, 2_887, 2_962, 3_014, 3_015, 3_142, 3_263,
    3_274, 3_398, 3_399, 3_548, 3_648, 3_649, 3_650, 3_651, 3_652, 3_661, 3_776, 3_777, 3_778,
    3_779, 3_780, 3_789, 3_953, 4_133, 6_581, 6_582, 6_583, 6_586, 6_917, 6_919, 6_921, 6_923,
    6_925, 6_929, 6_970, 6_972, 6_974, 6_975, 6_978, 43_701, 43_702, 43_705, 43_707, 43_708,
    69_937, 69_938, 70_471, 70_841, 71_096, 71_097, 71_989,
];

const INCLUDED_UNASSIGNED: [u32; 4] = [177_977, 178_206, 183_970, 191_457];

//
// Functions, public
//

/// This is, so far, the only public function in the library. It accepts as arguments two string
/// references and a `CollationOptions` struct. It returns an `Ordering` value. This is designed to
/// be used in conjunction with the `sort_by` function in the standard library. Simple usage might
/// look like the following...
///
/// ```
/// use feruca::{collate, CollationOptions};
///
/// let mut names = ["Peng", "Peña", "Ernie", "Émile"];
/// names.sort_by(|a, b| collate(a, b, &CollationOptions::default()));
///
/// let expected = ["Émile", "Ernie", "Peña", "Peng"];
/// assert_eq!(names, expected);
/// ```
///
/// Significantly, in the event that two strings are ordered equally per the Unicode Collation
/// Algorithm, this function will use byte-value comparison (i.e., the traditional, naïve way of
/// sorting strings) as a tiebreaker. A `collate_no_tiebreak` function may be added in the future,
/// if there is demand for it.
#[must_use]
pub fn collate(str_a: &str, str_b: &str, opt: &CollationOptions) -> Ordering {
    // Early out
    if str_a == str_b {
        return Ordering::Equal;
    }

    let a_nfd = get_nfd(str_a);
    let b_nfd = get_nfd(str_b);

    // I think it's worth offering an out here, too, in case two strings decompose to the same
    if a_nfd == b_nfd {
        // Tiebreaker
        return str_a.cmp(str_b);
    }

    let a_sort_key = nfd_to_sk(a_nfd, opt);
    let b_sort_key = nfd_to_sk(b_nfd, opt);

    let comparison = compare_sort_keys(&a_sort_key, &b_sort_key);

    if comparison == Ordering::Equal {
        // Tiebreaker
        return str_a.cmp(str_b);
    }

    comparison
}

//
// Functions, private
//

fn compare_sort_keys(a: &[u16], b: &[u16]) -> Ordering {
    let min_length = a.len().min(b.len());

    for i in 0..min_length {
        if a[i] < b[i] {
            return Ordering::Less;
        }

        if a[i] > b[i] {
            return Ordering::Greater;
        }
    }

    Ordering::Equal
}

fn get_nfd(input: &str) -> Vec<u32> {
    if fcd(input) {
        input.chars().map(|c| c as u32).collect()
    } else {
        UnicodeNormalization::nfd(input).map(|c| c as u32).collect()
    }
}

fn fcd(input: &str) -> bool {
    let mut c_as_u32: u32;
    let mut curr_lead_cc: u8;
    let mut curr_trail_cc: u8;

    let mut prev_trail_cc: u8 = 0;

    for c in input.chars() {
        c_as_u32 = c as u32;

        if c_as_u32 < 192 {
            prev_trail_cc = 0;
            continue;
        }

        if c_as_u32 == 3_969 || (44_032..=55_215).contains(&c_as_u32) {
            return false;
        }

        if let Some(vals) = FCD.get(&c_as_u32) {
            [curr_lead_cc, curr_trail_cc] = vals.to_be_bytes();
        } else {
            curr_lead_cc = get_ccc(c) as u8;
            curr_trail_cc = get_ccc(c) as u8;
        }

        if curr_lead_cc != 0 && curr_lead_cc < prev_trail_cc {
            return false;
        }

        prev_trail_cc = curr_trail_cc;
    }

    true
}

fn nfd_to_sk(nfd: Vec<u32>, opt: &CollationOptions) -> Vec<u16> {
    let cea = get_collation_element_array(nfd, opt);
    get_sort_key(&cea, opt.shifting)
}

fn get_sort_key(collation_element_array: &[Vec<u16>], shifting: bool) -> Vec<u16> {
    let max_level = if shifting { 4 } else { 3 };
    let mut sort_key: Vec<u16> = Vec::new();

    for i in 0..max_level {
        if i > 0 {
            sort_key.push(0);
        }

        for elem in collation_element_array.iter() {
            if elem[i] != 0 {
                sort_key.push(elem[i]);
            }
        }
    }

    sort_key
}

#[allow(clippy::too_many_lines)]
fn get_collation_element_array(mut char_vals: Vec<u32>, opt: &CollationOptions) -> Vec<Vec<u16>> {
    let mut cea: Vec<Vec<u16>> = Vec::new();

    let cldr = opt.keys_source == KeysSource::Cldr;
    let shifting = opt.shifting;

    let singles = if cldr { &SING_CLDR } else { &SING };
    let multis = if cldr { &MULT_CLDR } else { &MULT };

    let mut left: usize = 0;
    let mut last_variable = false;

    // We spend essentially the entire function in this loop
    'outer: while left < char_vals.len() {
        let left_val = char_vals[left];

        // Set lookahead depending on left_val. We need 3 in a few cases; 2 in several dozen cases;
        // and 1 otherwise.
        let lookahead: usize = match left_val {
            x if NEED_THREE.contains(&x) => 3,
            x if NEED_TWO.contains(&x) => 2,
            _ => 1,
        };

        // If lookahead is 1, or if this is the last item in the vec, we'll take an easy path
        let check_multi = lookahead > 1 && char_vals.len() - left > 1;

        if !check_multi {
            //
            // OUTCOME 1
            //
            // We only had to check for a single code point, and found it, so we can push the
            // weights and continue. This is the fastest path.
            //
            if let Some(row) = singles.get(&left_val) {
                for weights in row {
                    if shifting {
                        let weight_vals = get_shifted_weights(weights, last_variable);
                        cea.push(weight_vals);
                        if weights.variable {
                            last_variable = true;
                        } else if weights.primary != 0 {
                            last_variable = false;
                        }
                    } else {
                        let weight_vals =
                            vec![weights.primary, weights.secondary, weights.tertiary];
                        cea.push(weight_vals);
                    }
                }

                // Increment and continue outer loop
                left += 1;
                continue;
            }

            //
            // OUTCOME 2
            //
            // We checked for a single code point and didn't find it. That means it's unlisted. We
            // then calculate implicit weights, push them, and move on. I used to think there were
            // multiple paths to the "implicit weights" case, but it seems not.
            //

            let first_weights = get_implicit_a(left_val, shifting);
            cea.push(first_weights);

            let second_weights = get_implicit_b(left_val, shifting);
            cea.push(second_weights);

            // Increment and continue outer loop
            left += 1;
            continue;
        }

        // Here we consider multi-code-point matches, if possible

        // Don't look past the end of the vec
        let mut right = if left + lookahead > char_vals.len() {
            char_vals.len()
        } else {
            left + lookahead
        };

        while right > left {
            // If right - left == 1 (which cannot be the case in the first iteration), attempts to
            // find a slice have failed. So look for one code point, in the singles map
            if right - left == 1 {
                // If we found it, we do still need to check for discontiguous matches
                if let Some(value) = singles.get(&left_val) {
                    // Determine how much further right to look
                    let mut max_right = if right + 2 < char_vals.len() {
                        right + 2
                    } else if right + 1 < char_vals.len() {
                        right + 1
                    } else {
                        // This should skip the loop below. There will be no discontiguous match.
                        right
                    };

                    let mut try_two = max_right - right == 2 && cldr;

                    'inner: while max_right > right {
                        // Make sure the sequence of CCC values is kosher
                        let interest_cohort = &char_vals[right..=max_right];
                        let mut max_ccc = 0;

                        for elem in interest_cohort {
                            let ccc = get_ccc(char::from_u32(*elem).unwrap()) as u8;
                            if ccc == 0 || ccc <= max_ccc {
                                // Can also forget about try_two in this case
                                try_two = false;
                                max_right -= 1;
                                continue 'inner;
                            }
                            max_ccc = ccc;
                        }

                        // Having made it this far, we can test a new subset, adding later char(s)
                        let new_subset = if try_two {
                            [[left_val].as_slice(), &char_vals[max_right - 1..=max_right]].concat()
                        } else {
                            vec![left_val, char_vals[max_right]]
                        };

                        //
                        // OUTCOME 3
                        //
                        // We found a discontiguous match for one code point. This is a bad path,
                        // since it implies that we: checked for multiple code points; didn't find
                        // them; fell back to check for the initial code point; found it; checked
                        // for discontiguous matches; and found one. Anyway, push the weights...
                        //
                        if let Some(new_value) = multis.get(&new_subset) {
                            for weights in new_value {
                                if shifting {
                                    let weight_vals = get_shifted_weights(weights, last_variable);
                                    cea.push(weight_vals);
                                    if weights.variable {
                                        last_variable = true;
                                    } else if weights.primary != 0 {
                                        last_variable = false;
                                    }
                                } else {
                                    let weight_vals =
                                        vec![weights.primary, weights.secondary, weights.tertiary];
                                    cea.push(weight_vals);
                                }
                            }

                            // Remove the pulled char(s) (in this order!)
                            char_vals.remove(max_right);
                            if try_two {
                                char_vals.remove(max_right - 1);
                            }

                            // Increment and continue outer loop
                            left += 1;
                            continue 'outer;
                        }

                        // If we tried for two, don't decrement max_right yet
                        // Inner loop will re-run
                        if try_two {
                            try_two = false;
                        } else {
                            // Otherwise decrement max_right; inner loop may re-run, or finish
                            max_right -= 1;
                        }
                    }

                    //
                    // OUTCOME 4
                    //
                    // We checked for multiple code points; failed to find them; fell back to check
                    // for the initial code point; found it; checked for discontiguous matches; and
                    // did not find any. This is another bad path. Push the weights...
                    //
                    for weights in value {
                        if shifting {
                            let weight_vals = get_shifted_weights(weights, last_variable);
                            cea.push(weight_vals);
                            if weights.variable {
                                last_variable = true;
                            } else if weights.primary != 0 {
                                last_variable = false;
                            }
                        } else {
                            let weight_vals =
                                vec![weights.primary, weights.secondary, weights.tertiary];
                            cea.push(weight_vals);
                        }
                    }

                    // Increment and continue outer loop
                    left += 1;
                    continue 'outer;
                }

                // Reaching this point would imply that we looked for multiple code points; failed
                // to find anything; fell back to search for the left code point; and didn't find
                // that, either. So in theory, we would be dealing with an unlisted code point and
                // skipping down to calculate implicit weights. But that's impossible, isn't it? If
                // we started this path by checking for multiples, that means we had one of the
                // code points in NEED_THREE or NEED_TWO -- all of which are listed in the tables.
                // I think this is actually unreachable; and my testing bears that out.

                // no-op
            }

            // If we got here, we're trying to find a slice
            let subset = &char_vals[left..right];

            if let Some(value) = multis.get(subset) {
                // If we found it, we need to check for discontiguous matches
                // Determine how much further right to look
                let mut max_right = if (right + 2) < char_vals.len() {
                    right + 2
                } else if (right + 1) < char_vals.len() {
                    right + 1
                } else {
                    // This should skip the loop below. There will be no discontiguous match.
                    right
                };

                let mut try_two = max_right - right == 2 && cldr;

                'inner: while max_right > right {
                    // Need to make sure the sequence of CCCs is kosher
                    let interest_cohort = &char_vals[right..=max_right];
                    let mut max_ccc = 0;

                    for elem in interest_cohort {
                        let ccc = get_ccc(char::from_u32(*elem).unwrap()) as u8;
                        if ccc == 0 || ccc <= max_ccc {
                            // Can also forget about try_two in this case
                            try_two = false;
                            max_right -= 1;
                            continue 'inner;
                        }
                        max_ccc = ccc;
                    }

                    // Having made it this far, we can test a new subset, adding the later char(s)
                    let new_subset = if try_two {
                        [subset, &char_vals[max_right - 1..=max_right]].concat()
                    } else {
                        [subset, [char_vals[max_right]].as_slice()].concat()
                    };

                    //
                    // OUTCOME 5
                    //
                    // We checked for multiple code points; found something; went on to check for
                    // discontiguous matches; and found one. For a complicated case, this is a good
                    // path. Push the weights...
                    //
                    if let Some(new_value) = multis.get(&new_subset) {
                        for weights in new_value {
                            if shifting {
                                let weight_vals = get_shifted_weights(weights, last_variable);
                                cea.push(weight_vals);
                                if weights.variable {
                                    last_variable = true;
                                } else if weights.primary != 0 {
                                    last_variable = false;
                                }
                            } else {
                                let weight_vals =
                                    vec![weights.primary, weights.secondary, weights.tertiary];
                                cea.push(weight_vals);
                            }
                        }

                        // Remove the pulled char(s) (in this order!)
                        char_vals.remove(max_right);
                        if try_two {
                            char_vals.remove(max_right - 1);
                        }

                        // Increment and continue outer loop
                        left += right - left;
                        continue 'outer;
                    }

                    // If we tried for two, don't decrement max_right yet; inner loop will re-run
                    if try_two {
                        try_two = false;
                    } else {
                        // Otherwise decrement max_right; inner loop may re-run, or finish
                        max_right -= 1;
                    }
                }

                //
                // OUTCOME 6
                //
                // We checked for multiple code points; found something; checked for discontiguous
                // matches; and did not find any. This is an ok path. Push the weights...
                //
                for weights in value {
                    if shifting {
                        let weight_vals = get_shifted_weights(weights, last_variable);
                        cea.push(weight_vals);
                        if weights.variable {
                            last_variable = true;
                        } else if weights.primary != 0 {
                            last_variable = false;
                        }
                    } else {
                        let weight_vals =
                            vec![weights.primary, weights.secondary, weights.tertiary];
                        cea.push(weight_vals);
                    }
                }

                // Increment and continue outer loop
                left += right - left;
                continue 'outer;
            }

            // Shorten slice to try again
            right -= 1;
        }

        // Finally, increment and let outer loop continue
        left += 1;
    }

    // Return!
    cea
}

fn get_shifted_weights(weights: &Weights, last_variable: bool) -> Vec<u16> {
    if weights.primary == 0 && weights.secondary == 0 && weights.tertiary == 0 {
        vec![0, 0, 0, 0]
    } else if weights.variable {
        vec![0, 0, 0, weights.primary]
    } else if last_variable && weights.primary == 0 && weights.tertiary != 0 {
        vec![0, 0, 0, 0]
    } else {
        vec![weights.primary, weights.secondary, weights.tertiary, 65_535]
    }
}

fn get_implicit_a(left_val: u32, shifting: bool) -> Vec<u16> {
    #[allow(clippy::manual_range_contains)]
    let mut aaaa = match left_val {
        x if x >= 13_312 && x <= 19_903 => 64_384 + (left_val >> 15), //     CJK2
        x if x >= 19_968 && x <= 40_959 => 64_320 + (left_val >> 15), //     CJK1
        x if x >= 63_744 && x <= 64_255 => 64_320 + (left_val >> 15), //     CJK1
        x if x >= 94_208 && x <= 101_119 => 64_256,                   //     Tangut
        x if x >= 101_120 && x <= 101_631 => 64_258,                  //     Khitan
        x if x >= 101_632 && x <= 101_775 => 64_256,                  //     Tangut
        x if x >= 110_960 && x <= 111_359 => 64_257,                  //     Nushu
        x if x >= 131_072 && x <= 173_791 => 64_384 + (left_val >> 15), //   CJK2
        x if x >= 173_824 && x <= 191_471 => 64_384 + (left_val >> 15), //   CJK2
        x if x >= 196_608 && x <= 201_551 => 64_384 + (left_val >> 15), //   CJK2
        _ => 64_448 + (left_val >> 15),                               //     unass.
    };

    if INCLUDED_UNASSIGNED.contains(&left_val) {
        aaaa = 64_448 + (left_val >> 15);
    }

    #[allow(clippy::cast_possible_truncation)]
    if shifting {
        // Add an arbitrary fourth weight if shifting
        vec![aaaa as u16, 32, 2, 65_535]
    } else {
        vec![aaaa as u16, 32, 2]
    }
}

fn get_implicit_b(left_val: u32, shifting: bool) -> Vec<u16> {
    #[allow(clippy::manual_range_contains)]
    let mut bbbb = match left_val {
        x if x >= 13_312 && x <= 19_903 => left_val & 32_767, //      CJK2
        x if x >= 19_968 && x <= 40_959 => left_val & 32_767, //      CJK1
        x if x >= 63_744 && x <= 64_255 => left_val & 32_767, //      CJK1
        x if x >= 94_208 && x <= 101_119 => left_val - 94_208, //     Tangut
        x if x >= 101_120 && x <= 101_631 => left_val - 101_120, //   Khitan
        x if x >= 101_632 && x <= 101_775 => left_val - 94_208, //    Tangut
        x if x >= 110_960 && x <= 111_359 => left_val - 110_960, //   Nushu
        x if x >= 131_072 && x <= 173_791 => left_val & 32_767, //    CJK2
        x if x >= 173_824 && x <= 191_471 => left_val & 32_767, //    CJK2
        x if x >= 196_608 && x <= 201_551 => left_val & 32_767, //    CJK2
        _ => left_val & 32_767,                               //      unass.
    };

    if INCLUDED_UNASSIGNED.contains(&left_val) {
        bbbb = left_val & 32_767;
    }

    // BBBB always gets bitwise ORed with this value
    bbbb |= 32_768;

    #[allow(clippy::cast_possible_truncation)]
    if shifting {
        // Add an arbitrary fourth weight if shifting
        vec![bbbb as u16, 0, 0, 65_535]
    } else {
        vec![bbbb as u16, 0, 0]
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn conformance(path: &str, options: &CollationOptions) {
        let test_data = std::fs::read_to_string(path).unwrap();

        let mut max_sk: Vec<u16> = Vec::new();

        for line in test_data.lines() {
            if line.is_empty() || line.starts_with('#') {
                continue;
            }

            let hex_values: Vec<&str> = line.split(' ').collect();
            let mut test_string = String::new();

            for s in hex_values {
                let val = u32::from_str_radix(s, 16).unwrap();
                // We have to use an unsafe function for the conformance tests because they
                // deliberately introduce invalid character values.
                let c = unsafe { std::char::from_u32_unchecked(val) };
                test_string.push(c);
            }

            let nfd = get_nfd(&test_string);
            let sk = nfd_to_sk(nfd, options);

            let comparison = compare_sort_keys(&sk, &max_sk);
            if comparison == Ordering::Less {
                panic!();
            }

            max_sk = sk;
        }
    }

    #[test]
    fn ducet_non_ignorable() {
        let path = "test-data/CollationTest_NON_IGNORABLE_SHORT.txt";

        let options = CollationOptions {
            keys_source: KeysSource::Ducet,
            shifting: false,
        };

        conformance(path, &options);
    }

    #[test]
    fn ducet_shifted() {
        let path = "test-data/CollationTest_SHIFTED_SHORT.txt";

        let options = CollationOptions {
            keys_source: KeysSource::Ducet,
            shifting: true,
        };

        conformance(path, &options);
    }

    #[test]
    fn cldr_non_ignorable() {
        let path = "test-data/CollationTest_CLDR_NON_IGNORABLE_SHORT.txt";

        let options = CollationOptions {
            keys_source: KeysSource::Cldr,
            shifting: false,
        };

        conformance(path, &options);
    }

    #[test]
    fn cldr_shifted() {
        let path = "test-data/CollationTest_CLDR_SHIFTED_SHORT.txt";

        let options = CollationOptions {
            keys_source: KeysSource::Cldr,
            shifting: true,
        };

        conformance(path, &options);
    }
}