# ferroid
A Rust crate for generating and parsing **Snowflake** and **ULID** identifiers
with bit-level compatibility and pluggable components.
[![Crates.io][crates-badge]][crates-url] [![MIT licensed][mit-badge]][mit-url]
[![Apache 2.0 licensed][apache-badge]][apache-url] [![CI][ci-badge]][ci-url]
[crates-badge]: https://img.shields.io/crates/v/ferroid.svg
[crates-url]: https://crates.io/crates/ferroid
[mit-badge]: https://img.shields.io/badge/license-MIT-blue.svg
[mit-url]: https://github.com/s0l0ist/ferroid/blob/main/LICENSE-MIT
[apache-badge]: https://img.shields.io/badge/license-Apache%202.0-blue.svg
[apache-url]: https://github.com/s0l0ist/ferroid/blob/main/LICENSE-APACHE
[ci-badge]: https://github.com/s0l0ist/ferroid/actions/workflows/ci.yml/badge.svg?branch=main
[ci-url]: https://github.com/s0l0ist/ferroid/actions/workflows/ci.yml
## Features
- π Bit-level compatibility with major Snowflake and ULID formats
- π§© Pluggable clocks and RNGs via `TimeSource` and `RandSource`
- π§΅ Lock-free, lock-based, and single-threaded generators
- π Custom layouts via `define_snowflake_id!` and `define_ulid!` macros
- π’ Crockford base32 support with `base32` feature flag
## Table of Contents
- [Quick Start](#quick-start)
- [Supported Layouts](#supported-layouts)
- [Choosing a Generator](#choosing-a-generator)
- [Usage](#usage)
- [Basic Usage](#basic-usage)
- [Thread Local Generators](#thread-local-generators)
- [Synchronous Generators](#synchronous-generators)
- [Asynchronous Generators](#asynchronous-generators)
- [Custom Layouts](#custom-layouts)
- [Serialization (Serde)](#serialization-serde)
- [Base32 Encoding](#base32-encoding)
- [Feature Flags](#feature-flags)
- [Behavior & Semantics](#behavior--semantics)
- [Advanced Topics](#advanced-topics)
- [Benchmarks](#benchmarks)
- [Testing](#testing)
- [License](#license)
## Quick Start
```rust
use ferroid::id::ULID;
// Generate a ULID
let id = ULID::now();
println!("{}", id);
```
For more advanced usage patterns, see the [Usage](#usage) section below.
## Supported Layouts
### Snowflake
| Twitter | 41 | 10 | 12 | 2010-11-04 01:42:54.657 |
| Discord | 42 | 10 | 12 | 2015-01-01 00:00:00.000 |
| Instagram | 41 | 13 | 10 | 2011-01-01 00:00:00.000 |
| Mastodon | 48 | 0 | 16 | 1970-01-01 00:00:00.000 |
### ULID
| ULID | 48 | 80 | 1970-01-01 00:00:00.000 |
## Choosing a Generator
### Snowflake Generators
**Choosing a Generator**: Use `BasicSnowflakeGenerator` for single-threaded
contexts or one generator per thread. For shared multi-threaded access, prefer
`AtomicSnowflakeGenerator` for best performance, or `LockSnowflakeGenerator`
when atomics aren't available or for fairer scheduling under contention.
| `BasicSnowflakeGenerator` | β
| β | β | Highest | Single-threaded or generator per thread |
| `LockSnowflakeGenerator` | β
| β
| β | Medium | Fair multithreaded access |
| `AtomicSnowflakeGenerator` | β
| β
| β
| High | Fast concurrent generation |
### ULID Generators
| `BasicUlidGenerator` | β | β
| β | Slow | Thread-safe, always random, but slow |
| `BasicMonoUlidGenerator` | β
| β | β | Highest | Single-threaded or generator per thread |
| `LockMonoUlidGenerator` | β
| β
| β | Medium | Fair multithreaded access |
| `AtomicMonoUlidGenerator` | β
| β
| β
| High | Fast concurrent generation |
## Usage
### Basic Usage
The easiest way to generate a ULID is via `ULID::now()`, which gives you a
non-monotonic `ULID`:
```rust
use ferroid::id::ULID;
// A ULID (always random within the same millisecond)
let id: ULID = ULID::now();
```
### Thread Local Generators
If you're generating many IDs, the simplest way to generate a ULID is via
`Ulid`, which provides a thread-local generator that can produce both
non-monotonic and monotonic ULIDs. Both are more performant than calling
`ULID::now()`:
```rust
use ferroid::{generator::thread_local::Ulid, id::ULID};
// A ULID (always random within the same millisecond)
let id: ULID = Ulid::new_ulid();
// A monotonic ULID (faster, increments within the same millisecond)
Calling `next_id()` will call the passed in backoff strategy closure if the
underlying generator needs to yield. Please note that while this behavior is
exposed to provide maximum flexibility, you must be generating enough IDs **per
millisecond** to invoke this callback. You may spin, yield, or sleep depending
on your environment:
```rust
use ferroid::{
generator::{BasicSnowflakeGenerator, BasicUlidGenerator, Poll},
id::{Id, SnowflakeTwitterId, ToU64, ULID},
rand::ThreadRandom,
time::{MonotonicClock, TWITTER_EPOCH},
};
let snow_gen = BasicSnowflakeGenerator::new(0, MonotonicClock::with_epoch(TWITTER_EPOCH));
core::hint::spin_loop();
// Yield to the scheduler: lets another thread run; still may busy-wait. Or ...
std::thread::yield_now();
// Sleep for the suggested backoff: frees the core, but wakeup is imprecise.
std::thread::sleep(std::time::Duration::from_millis(yield_for.to_u64()));
// For use in runtimes such as `tokio` or `smol`, use the non-blocking async API (see below).
});
let ulid_gen = BasicUlidGenerator::new(MonotonicClock::default(), ThreadRandom::default());
To gain more control or optimize for different performance characteristics, you
can define a custom layout.
Use the `define_*` macros below to create a new struct with your chosen name.
The resulting type behaves just like built-in types such as `SnowflakeTwitterId`
or `ULID`, with no extra setup required and full compatibility with the existing
API.
```rust
use ferroid::{define_snowflake_id, define_ulid};
// Example: a 64-bit Twitter-like ID layout
//
// Bit Index: 63 63 62 22 21 12 11 0
// +--------------+----------------+-----------------+---------------+
// |<----------- MSB ---------- 64 bits ----------- LSB ------------>|
define_snowflake_id!(
MyCustomId, u64,
reserved: 1,
timestamp: 41,
machine_id: 10,
sequence: 12
);
// Example: a 128-bit ULID using the Ulid layout
//
// - 0 bits reserved
// - 48 bits timestamp
// - 80 bits random
//
// Bit Index: 127 80 79 0
// +----------------+-------------+
// |<-- MSB -- 128 bits -- LSB -->|
define_ulid!(
MyULID, u128,
reserved: 0,
timestamp: 48,
random: 80
);
```
**β οΈ Note**: When using the snowflake macro, you must specify all four sections
(in order): `reserved`, `timestamp`, `machine_id`, and `sequence`βeven if a
section uses 0 bits.
The reserved bits are always set to **zero** and can be reserved for future use.
Similarly, the ulid macro requires all three fields: `reserved`, `timestamp`,
and `random`.
## Serialization (Serde)
Users must explicitly choose a serialization strategy using `#[serde(with =
"...")]`.
There are two serialization strategies:
- `snow_as_int`/`ulid_as_int`: Serialize as native integer types (u64/u128)
- `snow_as_base32`/`ulid_as_base32`: Serialize as Crockford base32 encoded
strings
Both strategies validate during deserialization and return errors for invalid
IDs. This prevents overflow scenarios where the underlying integer value exceeds
the valid range for the ID type. For example, `SnowflakeTwitterId` reserves 1
bit, making `u64::MAX` invalid. This validation behavior is consistent with
`ferroid::base32::Error::DecodeOverflow` used in the base32 decoding path (see
Base32 section).
```rust
use ferroid::{
id::SnowflakeTwitterId,
serde::{snow_as_base32, snow_as_int},
};
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize)]
struct Event {
#[serde(with = "snow_as_int")]
id_snow_int: SnowflakeTwitterId, // Serializes as an int: 123456789
#[serde(with = "snow_as_base32")]
id_snow_base32: SnowflakeTwitterId, // Serializes as a base32 string: "000000000001A"
}
```
## Base32 Encoding
Enable the `base32` feature to support Crockford Base32 encoding and decoding of
IDs. This is useful when you need fixed-width, URL-safe, and lexicographically
sortable strings (e.g. for databases, logs, or URLs).
With `base32` enabled, each ID type automatically implements `fmt::Display`,
which internally uses `.encode()`. IDs also implement `TryFrom<&str>` and
`FromStr`, both of which decode via `.decode()`.
For explicit, allocation-free formatting, use `.encode()` to get a lightweight
formatter. This avoids committing to a specific string type and lets the
consumer control how and when to render the result. The formatter uses a
stack-allocated buffer and avoids heap allocation by default. To enable
`.to_string()` and other owned string functionality, enable the `alloc` feature.
```rust
use core::str::FromStr;
use ferroid::{
base32::{Base32SnowExt, Base32SnowFormatter, Base32UlidExt, Base32UlidFormatter},
id::{SnowflakeId, SnowflakeTwitterId, ULID, UlidId},
};
let id = SnowflakeTwitterId::from_components(123_456, 0, 42);
assert_eq!(format!("{id}"), "00000F280001A");
assert_eq!(id.encode(), "00000F280001A");
assert_eq!(SnowflakeTwitterId::decode("00000F280001A").unwrap(), id);
assert_eq!(SnowflakeTwitterId::try_from("00000F280001A").unwrap(), id);
assert_eq!(SnowflakeTwitterId::from_str("00000F280001A").unwrap(), id);
let id = ULID::from_components(123_456, 42);
assert_eq!(format!("{id}"), "0000003RJ0000000000000001A");
assert_eq!(id.encode(), "0000003RJ0000000000000001A");
assert_eq!(ULID::decode("0000003RJ0000000000000001A").unwrap(), id);
assert_eq!(ULID::try_from("0000003RJ0000000000000001A").unwrap(), id);
assert_eq!(ULID::from_str("0000003RJ0000000000000001A").unwrap(), id);
```
### Base32 Overflow Behavior
Base32 encodes in 5-bit chunks, which means encoded strings may represent more
bits than the target type can hold. Ferroid handles this pragmatically:
- Strings that decode to values larger than the target type are **accepted** if
all excess bits fall outside reserved regions
- If any excess bits fall into **reserved regions** (which must be zero),
decoding fails with `ferroid::base32::Error::DecodeOverflow`
- Types with **no reserved bits** (like `ULID`) will never fail due to overflow
- Types with **reserved bits** (like `SnowflakeTwitterId`) validate that
reserved bits remain unset
For complete technical details on the overflow model and differences from the
strict ULID specification, see the [Advanced Topics](#base32-overflow-details)
section.
## Feature Flags
Ferroid has many feature flags to enable only what you need. You should
determine your runtime and pick at least one ID family. If you need high
performance generators, then also enable at least one generator style.
### Runtime Selection
- `std`: Standard library support (required for `MonotonicClock` and lock-based
generators)
- `alloc`: Allocation support (for optimized `String` construction when enabled
with `base32`)
### ID Family
- `snowflake`: Enable Snowflake ID type(s)
- `ulid`: Enable ULID ID type(s)
- `thread-local`: Per-thread ULID generator (implies `std`, `alloc`, `ulid`,
`basic`)
### Generator Types
- `basic`: Fast single-threaded generators
- `lock`: Lock-based generators (implies `std`, `alloc`)
- `atomic`: Lock-free atomic generators
### Optimizations & Extensions
- `cache-padded`: Pad contended generators to reduce false sharing (benchmark to
confirm benefit)
- `parking-lot`: Use `parking_lot` mutexes instead of std (implies `std`,
`alloc`)
- `async-tokio`: Async support for Tokio runtime (implies `std`, `alloc`,
`futures`)
- `async-smol`: Async support for smol runtime (implies `std`, `alloc`,
`futures`)
- `futures`: Internal glue for async features
- `base32`: Crockford Base32 encoding/decoding
- `tracing`: Emit tracing spans during ID generation
- `serde`: Serialization support
### Presets
- `all`: Enable all functionality (except `cache-padded`, `parking-lot`)
### Usage Notes
Prefer `basic` or `atomic` generators. `lock` is a fallback for targets without
viable atomics. `cache-padded` and `parking-lot` only matter for lock-based
generators.
In `no_std` environments, you're currently limited to `basic` and `atomic`
generators (provided the target platform supports the correct atomic widths:
`AtomicU64` for snowflake, `AtomicU128` for ulid). You must also create your own
implementation of `TimeSource<T>` for the generators. `base32` is also supported
in `no_std`.
## Behavior & Semantics
### Snowflake
- If the clock **advances**: reset sequence to 0 β `Poll::Ready`
- If the clock is **unchanged**: increment sequence β `Poll::Ready`
- If the clock **goes backward**: return `Poll::Pending`
- If the sequence increment **overflows**: return `Poll::Pending`
### ULID
This implementation respects monotonicity within the same millisecond in a
single generator by incrementing the random portion of the ID and guarding
against overflow.
- If the clock **advances**: generate new random β `Poll::Ready`
- If the clock is **unchanged**: increment random β `Poll::Ready`
- If the clock **goes backward**: return `Poll::Pending`
- If the random increment **overflows**: return `Poll::Pending`
## Advanced Topics
### Collision Probability Analysis
When generating time-sortable IDs that use random bits, it's important to
estimate the probability of collisions (i.e., two IDs being the same within the
same millisecond), given your ID layout and system throughput.
#### Non-monotonic (always-random) collision probability
If $n$ IDs are generated within the same millisecond, and the ID has $r$ random
bits, the probability of **at least one collision** in that millisecond is
approximately:
$$P_\text{collision} \approx \frac{n(n-1)}{2 \cdot 2^r} $$
For $g$ generators each producing $k$ IDs per millisecond (so $n = g \cdot k$):
$$P_\text{collision} \approx \frac{(gk)(gk-1)}{2 \cdot 2^r} $$
Where:
- $g$ = number of generators
- $k$ = number of non-monotonic IDs per generator per millisecond
- $r$ = number of random bits per ID
- $n$ = total IDs generated per millisecond across all generators ($n = g \cdot k$)
- $P_{\text{collision}}$ = probability of at least one collision (within the
same millisecond)
Compared to monotonic generation (which increments from a random starting
point), always-random generation typically has higher collision probability when
multiple generators produce multiple IDs per millisecond.
#### Monotonic IDs with Multiple ULID Generators
If you have $g$ generators (e.g., distributed nodes), and each generator
produces $k$ **sequential** (monotonic) IDs per millisecond by incrementing from
a random starting point, the probability that any two generators produce
overlapping IDs in the same millisecond is approximately:
$$P_\text{collision} \approx \frac{g(g-1)(2k-1)}{2 \cdot 2^r}$$
Where:
- $g$ = number of generators
- $k$ = number of monotonic IDs per generator per millisecond
- $r$ = number of random bits per ID
- $P_\text{collision}$ = probability of at least one collision
> **Note**: The formula above uses the approximate (birthday bound) model, which
> assumes that:
>
> - $k \ll 2^r$ and $g \ll 2^r$
> - Each generator's range of $k$ IDs starts at a uniformly random position
> within the $r$-bit space
#### Estimating Time Until a Collision Occurs
While collisions only happen within a single millisecond, we often want to know
how long it takes before **any** collision happens, given continuous generation
over time.
The expected time in milliseconds to reach a 50% chance of collision is:
$$
T_{\text{50\%}} \approx \frac{\ln 2}{P_\text{collision}} = \frac{0.6931 \cdot
2 \cdot 2^r}{g(g - 1)(2k - 1)}
$$
This is derived from the cumulative probability formula:
$$P_\text{collision}(T) = 1 - (1 - P_\text{collision})^T$$
Solving for $T$ when $P_\text{collision}(T) = 0.5$:
$$(1 - P_\text{collision})^T = 0.5$$ $$\Rightarrow T \approx
\frac{\ln(0.5)}{\ln(1 - P_\text{collision})}$$
Using the approximation $\ln(1 - x) \approx -x$ for small $x$, this simplifies
to:
$$\Rightarrow T \approx \frac{\ln 2}{P_\text{collision}}$$
The $\ln 2$ term arises because $\ln(0.5) = -\ln 2$. After $T_\text{50\%}$
milliseconds, there's a 50% chance that at least one collision has occurred.
#### Example Collision Probabilities (Monotonic)
| 1 | 1 | $0$ (single generator; no collision possible) | β (no collision possible) |
| 1 | 65,536 | $0$ (single generator; no collision possible) | β (no collision possible) |
| 2 | 1 | $\displaystyle \frac{2 \times 1 \times 1}{2 \cdot 2^{80}} \approx 8.27 \times 10^{-25}$ | $\approx 8.38 \times 10^{23} \text{ ms}$ |
| 2 | 65,536 | $\displaystyle \frac{2 \times 1 \times 131{,}071}{2 \cdot 2^{80}} \approx 1.08 \times 10^{-19}$ | $\approx 6.39 \times 10^{18} \text{ ms}$ |
| 1,000 | 1 | $\displaystyle \frac{1{,}000 \times 999 \times 1}{2 \cdot 2^{80}} \approx 4.13 \times 10^{-19}$ | $\approx 1.68 \times 10^{18} \text{ ms}$ |
| 1,000 | 65,536 | $\displaystyle \frac{1{,}000 \times 999 \times 131{,}071}{2 \cdot 2^{80}} \approx 5.42 \times 10^{-14}$ | $\approx 1.28 \times 10^{13} \text{ ms} \approx 406\ years$ |
#### Example Collision Probabilities (Non-Monotonic)
| 1 | 1 | $0$ (single generator; no collision possible) | β (no collision possible) |
| 1 | 65,536 | $0$ (single generator; no collision possible) | β (no collision possible) |
| 2 | 1 | $\displaystyle \frac{2 \times 1}{2 \cdot 2^{80}} \approx 8.27 \times 10^{-25}$ | $\approx 8.38 \times 10^{23} \text{ ms}$ (same as monotonic) |
| 2 | 65,536 | $\displaystyle \frac{131{,}072 \times 131{,}071}{2 \cdot 2^{80}} \approx 7.11 \times 10^{-15}$ | $\approx 9.75 \times 10^{13} \text{ ms}$ |
| 1,000 | 1 | $\displaystyle \frac{1{,}000 \times 999}{2 \cdot 2^{80}} \approx 4.13 \times 10^{-19}$ | $\approx 1.68 \times 10^{18} \text{ ms}$ (same as monotonic) |
| 1,000 | 65,536 | $\displaystyle \frac{65{,}536{,}000 \times 65{,}535{,}999}{2 \cdot 2^{80}} \approx 1.78 \times 10^{-9}$ | $\approx 3.90 \times 10^{8} \text{ ms} \approx 4.5\ days$ |
### Base32 Overflow Details
Base32 encodes in 5-bit chunks. That means:
- A `u32` (32 bits) maps to 7 Base32 characters (7 Γ 5 = 35 bits)
- A `u64` (64 bits) maps to 13 Base32 characters (13 Γ 5 = 65 bits)
- A `u128` (128 bits) maps to 26 Base32 characters (26 Γ 5 = 130 bits)
This creates an invariant: an encoded string may contain more bits than the
target type can hold.
#### ULID Specification vs. Ferroid
The [ULID
specification](https://github.com/ulid/spec?tab=readme-ov-file#overflow-errors-when-parsing-base32-strings)
is strict:
> Technically, a 26-character Base32 encoded string can contain 130 bits of
> information, whereas a ULID must only contain 128 bits. Therefore, the largest
> valid ULID encoded in Base32 is 7ZZZZZZZZZZZZZZZZZZZZZZZZZ, which corresponds
> to an epoch time of 281474976710655 or 2 ^ 48 - 1.
>
> Any attempt to decode or encode a ULID larger than this should be rejected by
> all implementations, to prevent overflow bugs.
Ferroid takes a more flexible stance:
- Strings like `"ZZZZZZZZZZZZZZZZZZZZZZZZZZ"` (which technically overflow) are
accepted and decoded without error
- However, if any of the overflowed bits fall into reserved regions (which must
remain zero), decoding will fail with `ferroid::base32::Error::DecodeOverflow`
This allows any 13-character Base32 string to decode into a `u64`, or any
26-character string into a `u128`, **as long as reserved layout constraints
aren't violated**. If the layout defines no reserved bits, decoding is always
considered valid.
For example:
- A `ULID` has no reserved bits, so decoding will never fail due to overflow
- A `SnowflakeTwitterId` reserves the highest bit, so decoding must ensure that
bit remains unset
If reserved bits are set during decoding, Ferroid returns a
`ferroid::base32::Error::DecodeOverflow { id }` containing the full (invalid)
ID. You can recover by calling `.into_valid()` to mask off reserved
bitsβallowing either explicit error handling or silent correction.
## Benchmarks
See the [Benchmarks](BENCHMARKS.md)
## Testing
Run all tests with:
```sh
cargo test --features all
```
## License
Licensed under either of:
- [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
([LICENSE-APACHE](LICENSE-APACHE))
- [MIT License](https://opensource.org/licenses/MIT)
([LICENSE-MIT](LICENSE-MIT))
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
dual licensed as above, without any additional terms or conditions.