1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use super::GcPcSaftEosParameters;
use crate::hard_sphere::HardSphereProperties;
use feos_core::{HelmholtzEnergyDual, StateHD};
use ndarray::prelude::*;
use num_dual::DualNum;
use std::f64::consts::{FRAC_PI_3, PI};
use std::fmt;
use std::sync::Arc;
pub const AD: [[f64; 3]; 5] = [
[0.30435038064, 0.95346405973, -1.16100802773],
[-0.13585877707, -1.83963831920, 4.52586067320],
[1.44933285154, 2.01311801180, 0.97512223853],
[0.35569769252, -7.37249576667, -12.2810377713],
[-2.06533084541, 8.23741345333, 5.93975747420],
];
pub const BD: [[f64; 3]; 5] = [
[0.21879385627, -0.58731641193, 3.48695755800],
[-1.18964307357, 1.24891317047, -14.9159739347],
[1.16268885692, -0.50852797392, 15.3720218600],
[0.0; 3],
[0.0; 3],
];
pub const CD: [[f64; 3]; 4] = [
[-0.06467735252, -0.95208758351, -0.62609792333],
[0.19758818347, 2.99242575222, 1.29246858189],
[-0.80875619458, -2.38026356489, 1.65427830900],
[0.69028490492, -0.27012609786, -3.43967436378],
];
pub const PI_SQ_43: f64 = 4.0 * PI * FRAC_PI_3;
fn pair_integral_ij<D: DualNum<f64>>(mij1: f64, mij2: f64, eta: D, eps_ij_t: D) -> D {
let eta2 = eta * eta;
let etas = [D::one(), eta, eta2, eta2 * eta, eta2 * eta2];
(0..AD.len())
.map(|i| {
etas[i]
* (eps_ij_t * (BD[i][0] + mij1 * BD[i][1] + mij2 * BD[i][2])
+ (AD[i][0] + mij1 * AD[i][1] + mij2 * AD[i][2]))
})
.sum()
}
fn triplet_integral_ijk<D: DualNum<f64>>(mijk1: f64, mijk2: f64, eta: D) -> D {
let eta2 = eta * eta;
let etas = [D::one(), eta, eta2, eta2 * eta];
(0..CD.len())
.map(|i| etas[i] * (CD[i][0] + mijk1 * CD[i][1] + mijk2 * CD[i][2]))
.sum()
}
pub struct Dipole {
parameters: Arc<GcPcSaftEosParameters>,
mij1: Array2<f64>,
mij2: Array2<f64>,
mijk1: Array3<f64>,
mijk2: Array3<f64>,
f2_term: Array2<f64>,
f3_term: Array3<f64>,
}
impl Dipole {
pub fn new(parameters: &Arc<GcPcSaftEosParameters>) -> Self {
let ndipole = parameters.dipole_comp.len();
let f2_term = Array2::from_shape_fn([ndipole; 2], |(i, j)| {
parameters.mu2[i] * parameters.mu2[j] / parameters.s_ij[[i, j]].powi(3)
});
let f3_term = Array3::from_shape_fn([ndipole; 3], |(i, j, k)| {
parameters.mu2[i] * parameters.mu2[j] * parameters.mu2[k]
/ (parameters.s_ij[[i, j]] * parameters.s_ij[[i, k]] * parameters.s_ij[[j, k]])
});
let mut mij1 = Array2::zeros((ndipole, ndipole));
let mut mij2 = Array2::zeros((ndipole, ndipole));
let mut mijk1 = Array3::zeros((ndipole, ndipole, ndipole));
let mut mijk2 = Array3::zeros((ndipole, ndipole, ndipole));
for i in 0..ndipole {
let mi = parameters.m_mix[i].min(2.0);
mij1[[i, i]] = (mi - 1.0) / mi;
mij2[[i, i]] = mij1[[i, i]] * (mi - 2.0) / mi;
mijk1[[i, i, i]] = mij1[[i, i]];
mijk2[[i, i, i]] = mij2[[i, i]];
for j in i + 1..ndipole {
let mj = parameters.m_mix[j].min(2.0);
let mij = (mi * mj).sqrt();
mij1[[i, j]] = (mij - 1.0) / mij;
mij2[[i, j]] = mij1[[i, j]] * (mij - 2.0) / mij;
let mijk = (mi * mi * mj).cbrt();
mijk1[[i, i, j]] = (mijk - 1.0) / mijk;
mijk2[[i, i, j]] = mijk1[[i, i, j]] * (mijk - 2.0) / mijk;
let mijk = (mi * mj * mj).cbrt();
mijk1[[i, j, j]] = (mijk - 1.0) / mijk;
mijk2[[i, j, j]] = mijk1[[i, j, j]] * (mijk - 2.0) / mijk;
for k in j + 1..ndipole {
let mk = parameters.m_mix[k].min(2.0);
let mijk = (mi * mj * mk).cbrt();
mijk1[[i, j, k]] = (mijk - 1.0) / mijk;
mijk2[[i, j, k]] = mijk1[[i, j, k]] * (mijk - 2.0) / mijk;
}
}
}
Self {
parameters: parameters.clone(),
mij1,
mij2,
mijk1,
mijk2,
f2_term,
f3_term,
}
}
}
impl<D: DualNum<f64>> HelmholtzEnergyDual<D> for Dipole {
fn helmholtz_energy(&self, state: &StateHD<D>) -> D {
let p = &self.parameters;
let ndipole = p.dipole_comp.len();
let t_inv = state.temperature.inv();
let eps_ij_t = Array2::from_shape_fn([ndipole; 2], |(i, j)| t_inv * p.e_k_ij[[i, j]]);
let rho = &state.partial_density;
let eta = p.zeta(state.temperature, &state.partial_density, [3])[0];
let mut phi2 = D::zero();
let mut phi3 = D::zero();
for i in 0..ndipole {
let di = p.dipole_comp[i];
phi2 -= (rho[di] * rho[di] * self.f2_term[[i, i]])
* pair_integral_ij(self.mij1[[i, i]], self.mij2[[i, i]], eta, eps_ij_t[[i, i]]);
phi3 -= (rho[di] * rho[di] * rho[di] * self.f3_term[[i, i, i]])
* triplet_integral_ijk(self.mijk1[[i, i, i]], self.mijk2[[i, i, i]], eta);
for j in (i + 1)..ndipole {
let dj = p.dipole_comp[j];
phi2 -= (rho[di] * rho[dj] * self.f2_term[[i, j]])
* pair_integral_ij(self.mij1[[i, j]], self.mij2[[i, j]], eta, eps_ij_t[[i, j]])
* 2.0;
phi3 -= (rho[di] * rho[di] * rho[dj] * self.f3_term[[i, i, j]])
* triplet_integral_ijk(self.mijk1[[i, i, j]], self.mijk2[[i, i, j]], eta)
* 3.0;
phi3 -= (rho[di] * rho[dj] * rho[dj] * self.f3_term[[i, j, j]])
* triplet_integral_ijk(self.mijk1[[i, j, j]], self.mijk2[[i, j, j]], eta)
* 3.0;
for k in (j + 1)..ndipole {
let dk = p.dipole_comp[k];
phi3 -= (rho[di] * rho[dj] * rho[dk] * self.f3_term[[i, j, k]])
* triplet_integral_ijk(self.mijk1[[i, j, k]], self.mijk2[[i, j, k]], eta)
* 6.0;
}
}
}
phi2 *= t_inv * t_inv * PI;
phi3 *= t_inv.powi(3) * PI_SQ_43;
let mut result = phi2 * phi2 / (phi2 - phi3) * state.volume;
if result.re().is_nan() {
result = phi2 * state.volume
}
result
}
}
impl fmt::Display for Dipole {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Dipole")
}
}