1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
//! Functionality for sparse linear algebra.
//!
//! Some of it is intended to be ported to `nalgebra-sparse` later.
use fenris_paradis::{ParallelIndexedAccess, ParallelIndexedCollection};
use nalgebra_sparse::pattern::SparsityPattern;
use nalgebra_sparse::CsrMatrix;
use std::slice;
// // TODO: Do we want to try to remove duplicates? Probably not...
// pub fn from_offsets_and_unsorted_indices(
// major_dim: usize,
// minor_dim: usize,
// major_offsets: Vec<usize>,
// mut minor_indices: Vec<usize>,
// ) -> Self {
// assert_eq!(major_offsets.len(), major_dim + 1);
// assert_eq!(*major_offsets.last().unwrap(), minor_indices.len());
// if major_offsets
// .iter()
// .tuple_windows()
// .any(|(prev, next)| prev > next)
// {
// panic!("Offsets must be non-decreasing.");
// }
//
// for (major_begin, major_end) in major_offsets.iter().tuple_windows() {
// let minor = &mut minor_indices[*major_begin..*major_end];
// minor.sort_unstable();
// if minor
// .iter()
// .tuple_windows()
// .any(|(prev, next)| prev >= next)
// {
// panic!("Minor indices contain duplicates");
// }
// }
//
// Self {
// major_offsets,
// minor_indices,
// minor_dim,
// }
// }
// /// Appends another sparsity pattern to this one, in the sense that it is extended
// /// along its major dimension.
// ///
// /// Panics if `self` and `other` have different minor dimensions.
// pub fn append_pattern(&mut self, other: &SparsityPattern) {
// assert_eq!(self.minor_dim(), other.minor_dim());
//
// let offset_begin = *self.major_offsets.last().unwrap();
// let new_offsets_iter = other
// .major_offsets()
// .iter()
// .map(|offset| offset + offset_begin);
//
// self.major_offsets.pop();
// self.major_offsets.extend(new_offsets_iter);
// self.minor_indices.extend_from_slice(&other.minor_indices);
// }
// // TODO: Write tests
// pub fn diag_iter<'a>(&'a self) -> impl 'a + Iterator<Item = T>
// where
// T: Zero + Clone,
// {
// let ia = self.row_offsets();
// let ja = self.column_indices();
// (0..self.nrows()).map(move |i| {
// let row_begin = ia[i];
// let row_end = ia[i + 1];
// let columns_in_row = &ja[row_begin..row_end];
// if let Ok(idx) = columns_in_row.binary_search(&i) {
// self.values()[row_begin + idx].clone()
// } else {
// T::zero()
// }
// })
// }
// pub fn from_diagonal<'a>(diagonal: impl Into<DVectorView<'a, T>>) -> Self
// where
// T: Scalar,
// {
// let diagonal = diagonal.into();
// let vals = diagonal.iter().cloned().collect();
// let num_rows = diagonal.len();
// let ia = (0..(num_rows + 1)).collect();
// let ja = (0..num_rows).collect();
// Self::from_csr_data(num_rows, num_rows, ia, ja, vals)
// }
//
// pub fn from_pattern_and_values(pattern: Arc<SparsityPattern>, values: Vec<T>) -> Self {
// assert_eq!(pattern.nnz(), values.len());
// Self {
// sparsity_pattern: pattern,
// v: values,
// }
// }
// /// Computes `self += a*x` where `x` is another matrix. Panics if the matrices are of different size.
// pub fn add_assign_scaled(&mut self, a: T, x: &Self)
// where
// T: Clone + ClosedAdd + ClosedMul,
// {
// assert_eq!(self.values_mut().len(), x.values().len());
// for (v_i, x_i) in self.values_mut().iter_mut().zip(x.values().iter()) {
// *v_i += a.clone() * x_i.clone();
// }
// }
// pub fn append_csr_rows(&mut self, other: &CsrMatrix<T>)
// where
// T: Clone,
// {
// Arc::make_mut(&mut self.sparsity_pattern).append_pattern(&other.sparsity_pattern());
// self.v.extend_from_slice(other.values());
// }
// pub fn concat_diagonally(matrices: &[CsrMatrix<T>]) -> CsrMatrix<T>
// where
// T: Clone,
// {
// let mut num_rows = 0;
// let mut num_cols = 0;
// let mut nnz = 0;
//
// // This first pass over the matrices is cheap, since we don't access any of the data.
// // We use this to be able to pre-allocate enough capacity so that no further
// // reallocation will be necessary.
// for matrix in matrices {
// num_rows += matrix.nrows();
// num_cols += matrix.ncols();
// nnz += matrix.nnz();
// }
//
// let mut values = Vec::with_capacity(nnz);
// let mut column_indices = Vec::with_capacity(nnz);
// let mut row_offsets = Vec::with_capacity(num_rows + 1);
//
// let mut col_offset = 0;
// let mut nnz_offset = 0;
// for matrix in matrices {
// values.extend_from_slice(matrix.values());
// column_indices.extend(matrix.column_indices().iter().map(|i| *i + col_offset));
// row_offsets.extend(
// matrix
// .row_offsets()
// .iter()
// .take(matrix.nrows())
// .map(|offset| *offset + nnz_offset),
// );
//
// col_offset += matrix.ncols();
// nnz_offset += matrix.nnz();
// }
//
// row_offsets.push(nnz);
//
// Self {
// // TODO: Avoid validation of pattern for performance
// sparsity_pattern: Arc::new(SparsityPattern::from_offsets_and_indices(
// num_rows,
// num_cols,
// row_offsets,
// column_indices,
// )),
// v: values,
// }
// }
pub struct ParCsrRow<'a, T> {
column_indices: &'a [usize],
values: &'a [T],
}
pub struct ParCsrRowMut<'a, T> {
column_indices: &'a [usize],
values: *mut T,
}
impl<'a, T> ParCsrRow<'a, T> {
/// Number of non-zeros in this row.
pub fn nnz(&self) -> usize {
self.column_indices.len()
}
pub fn values(&self) -> &[T] {
self.values
}
pub fn col_indices(&self) -> &[usize] {
self.column_indices
}
}
impl<'a, T> ParCsrRowMut<'a, T> {
/// Number of non-zeros in this row.
pub fn nnz(&self) -> usize {
self.column_indices.len()
}
pub fn values_mut(&mut self) -> &mut [T] {
unsafe { slice::from_raw_parts_mut(self.values, self.column_indices.len()) }
}
pub fn cols_and_values_mut(&mut self) -> (&[usize], &mut [T]) {
let values_mut = unsafe { slice::from_raw_parts_mut(self.values, self.column_indices.len()) };
(&self.column_indices, values_mut)
}
}
/// Wrapper for a CsrMatrix that allows it to be interpreted as a parallel collection of rows.
pub struct ParallelCsrRowCollection<'a, T>(pub &'a mut CsrMatrix<T>);
#[derive(Copy)]
pub struct CsrParallelRowAccess<'a, T> {
pattern: &'a SparsityPattern,
values_ptr: *mut T,
}
impl<'a, T> Clone for CsrParallelRowAccess<'a, T> {
fn clone(&self) -> Self {
Self {
pattern: self.pattern,
values_ptr: self.values_ptr,
}
}
}
unsafe impl<'a, T: 'a + Sync> Sync for CsrParallelRowAccess<'a, T> {}
unsafe impl<'a, T: 'a + Send> Send for CsrParallelRowAccess<'a, T> {}
unsafe impl<'a, 'b, T: 'a + Sync + Send> ParallelIndexedAccess<'b> for CsrParallelRowAccess<'a, T>
where
'a: 'b,
{
type Record = ParCsrRow<'b, T>;
type RecordMut = ParCsrRowMut<'b, T>;
unsafe fn get_unchecked(&self, global_index: usize) -> Self::Record {
let major_offsets = self.pattern.major_offsets();
let row_begin = *major_offsets.get_unchecked(global_index);
let row_end = *major_offsets.get_unchecked(global_index + 1);
let column_indices = &self.pattern.minor_indices()[row_begin..row_end];
let values_ptr = self.values_ptr.add(row_begin);
let values = slice::from_raw_parts(values_ptr, column_indices.len());
ParCsrRow { column_indices, values }
}
unsafe fn get_unchecked_mut(&self, global_index: usize) -> Self::RecordMut {
let major_offsets = self.pattern.major_offsets();
let row_begin = *major_offsets.get_unchecked(global_index);
let row_end = *major_offsets.get_unchecked(global_index + 1);
let column_indices = &self.pattern.minor_indices()[row_begin..row_end];
let values_ptr = self.values_ptr.add(row_begin);
ParCsrRowMut {
column_indices,
values: values_ptr,
}
}
}
unsafe impl<'a, T: 'a + Sync + Send> ParallelIndexedCollection<'a> for ParallelCsrRowCollection<'a, T> {
type Access = CsrParallelRowAccess<'a, T>;
unsafe fn create_access(&'a mut self) -> Self::Access {
// TODO: Instead of storing a reference to the sparsity pattern we should probably
// rather store the CSR data directly
let values_ptr = self.0.values_mut().as_mut_ptr();
let pattern = self.0.pattern();
CsrParallelRowAccess { pattern, values_ptr }
}
fn len(&self) -> usize {
self.0.nrows()
}
}
// impl<T> CsrMatrix<T>
// where
// T: Real,
// {
// pub fn scale_rows<'a>(&mut self, diagonal_matrix: impl Into<DVectorView<'a, T>>) {
// let diag = diagonal_matrix.into();
// assert_eq!(diag.len(), self.nrows());
// self.transform_values(|i, _, v| *v *= diag[i]);
// }
//
// pub fn scale_cols<'a>(&mut self, diagonal_matrix: impl Into<DVectorView<'a, T>>) {
// let diag = diagonal_matrix.into();
// assert_eq!(diag.len(), self.ncols());
// self.transform_values(|_, j, v| *v *= diag[j]);
// }
// }