1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
//! Crypto utility.
use aes_gcm::{aead::Aead, Aes256Gcm, KeyInit, Nonce};
use rand::{rngs::OsRng, RngCore};
use sha2::{Digest, Sha256};
use std::io::{self, Read, Write};
/// Default initialization vector length (12b).
pub const IV_LEN: usize = 96 / 8;
/// Default authentication tag length (16b).
pub const TAG_LEN: usize = 128 / 8;
/// Encryption chunk length: plaintext (128kb).
pub const ENC_CHUNK_LEN: usize = 128000;
/// Decryption chunk length: iv (12b) + ciphertext (128kb) + auth tag (16b).
pub const DEC_CHUNK_LEN: usize = IV_LEN + ENC_CHUNK_LEN + TAG_LEN;
/// Enum of the different possible crypto errors.
#[derive(Debug)]
pub enum ErrorKind {
AesError(aes_gcm::Error),
Io(io::Error),
}
/// A struct for encrypting/decrypting bytes or io streams.
#[derive(Clone)]
pub struct Crypto {
cipher: Aes256Gcm,
}
impl Crypto {
/// Create a new [`Crypto`] instance, the given key will be
/// used for every operation performed.
pub fn new<K>(key: K) -> Result<Crypto, ErrorKind>
where
K: AsRef<[u8]>,
{
let key = hash_key(key.as_ref());
Ok(Crypto {
cipher: Aes256Gcm::new_from_slice(&key).unwrap(),
})
}
/// Encrypt bytes with initialisation vector.
pub fn encrypt_with_iv(&self, plaintext: &[u8], iv: &[u8]) -> Result<Vec<u8>, ErrorKind> {
Ok(self
.cipher
.encrypt(Nonce::from_slice(iv), plaintext)
.map_err(|e| ErrorKind::AesError(e))?)
}
/// Decrypt bytes with initialisation vector.
pub fn decrypt_with_iv(&self, ciphertext: &[u8], iv: &[u8]) -> Result<Vec<u8>, ErrorKind> {
Ok(self
.cipher
.decrypt(Nonce::from_slice(iv), ciphertext)
.map_err(|e| ErrorKind::AesError(e))?)
}
/// Encrypt a small piece of data.
///
/// Example:
///
/// ```
/// use fencryption_lib::crypto::Crypto;
///
/// let my_super_key = "this_is_super_secure".as_bytes();
/// let my_super_secret_message = "hello :)".as_bytes();
///
/// let crypto = Crypto::new(my_super_key).unwrap();
///
/// let enc = crypto.encrypt(my_super_secret_message).unwrap();
///
/// assert_ne!(my_super_secret_message, enc);
/// ```
pub fn encrypt<P>(&self, plain: P) -> Result<Vec<u8>, ErrorKind>
where
P: AsRef<[u8]>,
{
let iv = random_iv();
Ok([&iv, self.encrypt_with_iv(plain.as_ref(), &iv)?.as_slice()].concat())
}
/// Decrypt a small piece of data.
///
/// Example:
///
/// ```
/// use fencryption_lib::crypto::Crypto;
///
/// let my_super_key = "this_is_super_secure".as_bytes();
/// let my_super_secret_message = "hello :)".as_bytes();
///
/// let crypto = Crypto::new(my_super_key).unwrap();
///
/// let enc = crypto.encrypt(my_super_secret_message).unwrap();
/// let dec = crypto.decrypt(&enc).unwrap();
///
/// assert_eq!(my_super_secret_message, dec);
/// ```
pub fn decrypt<E>(&self, enc: E) -> Result<Vec<u8>, ErrorKind>
where
E: AsRef<[u8]>,
{
let (iv, ciphertext) = enc.as_ref().split_at(IV_LEN);
self.decrypt_with_iv(ciphertext, iv)
}
/// Encrypt data from a reader and write it in a writer.
/// When working with small pieces of data, use
/// [`Crypto::encrypt`].
///
/// Example:
///
/// (See [`TmpDir`][crate::tmp::TmpDir])
///
/// ```
/// use fencryption_lib::crypto::Crypto;
/// use fencryption_lib::tmp::TmpDir;
///
/// let my_super_key = b"this_is_super_secure";
/// let my_super_secret_message = b"hello :)";
///
/// let tmp_dir = TmpDir::new().unwrap();
/// let crypto = Crypto::new(my_super_key).unwrap();
///
/// tmp_dir.write_file("plain", my_super_secret_message).unwrap();
///
/// crypto
/// .encrypt_io(
/// &mut tmp_dir.open_readable("plain").unwrap(),
/// &mut tmp_dir.create_file("enc").unwrap(),
/// )
/// .unwrap();
/// ```
pub fn encrypt_io(
&self,
source: &mut impl Read,
dest: &mut impl Write,
) -> Result<(), ErrorKind> {
let mut buffer = [0u8; ENC_CHUNK_LEN];
loop {
let read_len = source.read(&mut buffer).map_err(|e| ErrorKind::Io(e))?;
dest.write_all(&self.encrypt(&buffer[..read_len])?)
.map_err(|e| ErrorKind::Io(e))?;
// Stops when the loop reached the end of the file
if read_len != ENC_CHUNK_LEN {
break;
}
}
Ok(())
}
/// Decrypt data from a reader and write it in a writer.
/// When working with small pieces of data, use
/// [`Crypto::decrypt`].
///
/// Example:
///
/// (See [`TmpDir`][crate::tmp::TmpDir])
///
/// ```
/// use fencryption_lib::crypto::Crypto;
/// use fencryption_lib::tmp::TmpDir;
///
/// let my_super_key = b"this_is_super_secure";
/// let my_super_secret_message = b"hello :)";
///
/// let tmp_dir = TmpDir::new().unwrap();
/// let crypto = Crypto::new(my_super_key).unwrap();
///
/// tmp_dir.write_file("plain", my_super_secret_message).unwrap();
///
/// crypto
/// .encrypt_io(
/// &mut tmp_dir.open_readable("plain").unwrap(),
/// &mut tmp_dir.create_file("enc").unwrap(),
/// )
/// .unwrap();
/// crypto
/// .decrypt_io(
/// &mut tmp_dir.open_readable("enc").unwrap(),
/// &mut tmp_dir.create_file("dec").unwrap(),
/// )
/// .unwrap();
///
/// assert_eq!(tmp_dir.read_file("dec").unwrap(), my_super_secret_message[..]);
/// ```
pub fn decrypt_io(
&self,
source: &mut impl Read,
dest: &mut impl Write,
) -> Result<(), ErrorKind> {
let mut buffer = [0u8; DEC_CHUNK_LEN];
loop {
let read_len = source.read(&mut buffer).map_err(|e| ErrorKind::Io(e))?;
dest.write_all(&self.decrypt(&buffer[..read_len])?)
.map_err(|e| ErrorKind::Io(e))?;
// Stops when the loop reached the end of the file.
if read_len != DEC_CHUNK_LEN {
break;
}
}
Ok(())
}
}
fn hash_key<K>(key: K) -> Vec<u8>
where
K: AsRef<[u8]>,
{
let mut hasher = Sha256::new();
hasher.update(key.as_ref());
hasher.finalize().to_vec()
}
fn random_iv() -> Vec<u8> {
let mut iv = [0; IV_LEN];
OsRng.fill_bytes(&mut iv);
iv.to_vec()
}