1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
use super::*;
use crate::{
assert, debug_assert,
diag::DiagRef,
mat::matalloc::{align_for, is_vectorizable, MatUnit, RawMat, RawMatUnit},
utils::DivCeil,
};
use core::mem::ManuallyDrop;
/// Heap allocated resizable matrix, similar to a 2D [`Vec`].
///
/// # Note
///
/// The memory layout of `Mat` is guaranteed to be column-major, meaning that it has a row stride
/// of `1`, and an unspecified column stride that can be queried with [`Mat::col_stride`].
///
/// This implies that while each individual column is stored contiguously in memory, the matrix as
/// a whole may not necessarily be contiguous. The implementation may add padding at the end of
/// each column when overaligning each column can provide a performance gain.
///
/// Let us consider a 3×4 matrix
///
/// ```notcode
/// 0 │ 3 │ 6 │ 9
/// ───┼───┼───┼───
/// 1 │ 4 │ 7 │ 10
/// ───┼───┼───┼───
/// 2 │ 5 │ 8 │ 11
/// ```
/// The memory representation of the data held by such a matrix could look like the following:
///
/// ```notcode
/// 0 1 2 X 3 4 5 X 6 7 8 X 9 10 11 X
/// ```
///
/// where X represents padding elements.
#[repr(C)]
pub struct Mat<E: Entity> {
inner: MatOwnImpl<E>,
row_capacity: usize,
col_capacity: usize,
__marker: PhantomData<E>,
}
impl<E: Entity> Drop for Mat<E> {
#[inline]
fn drop(&mut self) {
drop(RawMat::<E> {
ptr: self.inner.ptr,
row_capacity: self.row_capacity,
col_capacity: self.col_capacity,
});
}
}
impl<E: Entity> Mat<E> {
/// Returns an empty matrix of dimension `0×0`.
#[inline]
pub fn new() -> Self {
Self {
inner: MatOwnImpl {
ptr: into_copy::<E, _>(E::faer_map(E::UNIT, |()| NonNull::<E::Unit>::dangling())),
nrows: 0,
ncols: 0,
},
row_capacity: 0,
col_capacity: 0,
__marker: PhantomData,
}
}
/// Returns a new matrix with dimensions `(0, 0)`, with enough capacity to hold a maximum of
/// `row_capacity` rows and `col_capacity` columns without reallocating. If either is `0`,
/// the matrix will not allocate.
///
/// # Panics
/// The function panics if the total capacity in bytes exceeds `isize::MAX`.
#[inline]
pub fn with_capacity(row_capacity: usize, col_capacity: usize) -> Self {
let raw = ManuallyDrop::new(RawMat::<E>::new(row_capacity, col_capacity));
Self {
inner: MatOwnImpl {
ptr: raw.ptr,
nrows: 0,
ncols: 0,
},
row_capacity: raw.row_capacity,
col_capacity: raw.col_capacity,
__marker: PhantomData,
}
}
/// Returns a new matrix with dimensions `(nrows, ncols)`, filled with the provided function.
///
/// # Panics
/// The function panics if the total capacity in bytes exceeds `isize::MAX`.
#[inline]
pub fn from_fn(nrows: usize, ncols: usize, f: impl FnMut(usize, usize) -> E) -> Self {
let mut this = Self::new();
this.resize_with(nrows, ncols, f);
this
}
/// Returns a new matrix with dimensions `(nrows, ncols)`, filled with zeros.
///
/// # Panics
/// The function panics if the total capacity in bytes exceeds `isize::MAX`.
#[inline]
pub fn zeros(nrows: usize, ncols: usize) -> Self {
Self::from_fn(nrows, ncols, |_, _| unsafe { core::mem::zeroed() })
}
/// Returns a new matrix with dimensions `(nrows, ncols)`, filled with zeros, except the main
/// diagonal which is filled with ones.
///
/// # Panics
/// The function panics if the total capacity in bytes exceeds `isize::MAX`.
#[inline]
pub fn identity(nrows: usize, ncols: usize) -> Self
where
E: ComplexField,
{
let mut matrix = Self::zeros(nrows, ncols);
matrix
.as_mut()
.diagonal_mut()
.column_vector_mut()
.fill(E::faer_one());
matrix
}
/// Returns the number of rows of the matrix.
#[inline(always)]
pub fn nrows(&self) -> usize {
self.inner.nrows
}
/// Returns the number of columns of the matrix.
#[inline(always)]
pub fn ncols(&self) -> usize {
self.inner.ncols
}
/// Set the dimensions of the matrix.
///
/// # Safety
/// The behavior is undefined if any of the following conditions are violated:
/// * `nrows < self.row_capacity()`.
/// * `ncols < self.col_capacity()`.
/// * The elements that were previously out of bounds but are now in bounds must be
/// initialized.
#[inline]
pub unsafe fn set_dims(&mut self, nrows: usize, ncols: usize) {
self.inner.nrows = nrows;
self.inner.ncols = ncols;
}
/// Returns a pointer to the data of the matrix.
#[inline]
pub fn as_ptr(&self) -> GroupFor<E, *const E::Unit> {
E::faer_map(from_copy::<E, _>(self.inner.ptr), |ptr| {
ptr.as_ptr() as *const E::Unit
})
}
/// Returns a mutable pointer to the data of the matrix.
#[inline]
pub fn as_ptr_mut(&mut self) -> GroupFor<E, *mut E::Unit> {
E::faer_map(from_copy::<E, _>(self.inner.ptr), |ptr| ptr.as_ptr())
}
/// Returns the row capacity, that is, the number of rows that the matrix is able to hold
/// without needing to reallocate, excluding column insertions.
#[inline]
pub fn row_capacity(&self) -> usize {
self.row_capacity
}
/// Returns the column capacity, that is, the number of columns that the matrix is able to hold
/// without needing to reallocate, excluding row insertions.
#[inline]
pub fn col_capacity(&self) -> usize {
self.col_capacity
}
/// Returns the offset between the first elements of two successive rows in the matrix.
/// Always returns `1` since the matrix is column major.
#[inline]
pub fn row_stride(&self) -> isize {
1
}
/// Returns the offset between the first elements of two successive columns in the matrix.
#[inline]
pub fn col_stride(&self) -> isize {
self.row_capacity() as isize
}
#[cold]
fn do_reserve_exact(&mut self, mut new_row_capacity: usize, new_col_capacity: usize) {
if is_vectorizable::<E::Unit>() {
let align_factor = align_for::<E::Unit>() / core::mem::size_of::<E::Unit>();
new_row_capacity = new_row_capacity
.msrv_checked_next_multiple_of(align_factor)
.unwrap();
}
let nrows = self.inner.nrows;
let ncols = self.inner.ncols;
let old_row_capacity = self.row_capacity;
let old_col_capacity = self.col_capacity;
let mut this = ManuallyDrop::new(core::mem::take(self));
{
let mut this_group = E::faer_map(from_copy::<E, _>(this.inner.ptr), |ptr| MatUnit {
raw: RawMatUnit {
ptr,
row_capacity: old_row_capacity,
col_capacity: old_col_capacity,
},
nrows,
ncols,
});
E::faer_map(E::faer_as_mut(&mut this_group), |mat_unit| {
mat_unit.do_reserve_exact(new_row_capacity, new_col_capacity);
});
let this_group = E::faer_map(this_group, ManuallyDrop::new);
this.inner.ptr =
into_copy::<E, _>(E::faer_map(this_group, |mat_unit| mat_unit.raw.ptr));
this.row_capacity = new_row_capacity;
this.col_capacity = new_col_capacity;
}
*self = ManuallyDrop::into_inner(this);
}
/// Reserves the minimum capacity for `row_capacity` rows and `col_capacity`
/// columns without reallocating. Does nothing if the capacity is already sufficient.
///
/// # Panics
/// The function panics if the new total capacity in bytes exceeds `isize::MAX`.
#[inline]
pub fn reserve_exact(&mut self, row_capacity: usize, col_capacity: usize) {
if self.row_capacity() >= row_capacity && self.col_capacity() >= col_capacity {
// do nothing
} else if core::mem::size_of::<E::Unit>() == 0 {
self.row_capacity = self.row_capacity().max(row_capacity);
self.col_capacity = self.col_capacity().max(col_capacity);
} else {
self.do_reserve_exact(row_capacity, col_capacity);
}
}
unsafe fn insert_block_with<F: FnMut(usize, usize) -> E>(
&mut self,
f: &mut F,
row_start: usize,
row_end: usize,
col_start: usize,
col_end: usize,
) {
debug_assert!(all(row_start <= row_end, col_start <= col_end));
let ptr = self.as_ptr_mut();
for j in col_start..col_end {
let ptr_j = E::faer_map(E::faer_copy(&ptr), |ptr| {
ptr.wrapping_offset(j as isize * self.col_stride())
});
for i in row_start..row_end {
// SAFETY:
// * pointer to element at index (i, j), which is within the
// allocation since we reserved enough space
// * writing to this memory region is sound since it is properly
// aligned and valid for writes
let ptr_ij = E::faer_map(E::faer_copy(&ptr_j), |ptr_j| ptr_j.add(i));
let value = E::faer_into_units(f(i, j));
E::faer_map(E::faer_zip(ptr_ij, value), |(ptr_ij, value)| {
core::ptr::write(ptr_ij, value)
});
}
}
}
fn erase_last_cols(&mut self, new_ncols: usize) {
let old_ncols = self.ncols();
debug_assert!(new_ncols <= old_ncols);
self.inner.ncols = new_ncols;
}
fn erase_last_rows(&mut self, new_nrows: usize) {
let old_nrows = self.nrows();
debug_assert!(new_nrows <= old_nrows);
self.inner.nrows = new_nrows;
}
unsafe fn insert_last_cols_with<F: FnMut(usize, usize) -> E>(
&mut self,
f: &mut F,
new_ncols: usize,
) {
let old_ncols = self.ncols();
debug_assert!(new_ncols > old_ncols);
self.insert_block_with(f, 0, self.nrows(), old_ncols, new_ncols);
self.inner.ncols = new_ncols;
}
unsafe fn insert_last_rows_with<F: FnMut(usize, usize) -> E>(
&mut self,
f: &mut F,
new_nrows: usize,
) {
let old_nrows = self.nrows();
debug_assert!(new_nrows > old_nrows);
self.insert_block_with(f, old_nrows, new_nrows, 0, self.ncols());
self.inner.nrows = new_nrows;
}
/// Resizes the matrix in-place so that the new dimensions are `(new_nrows, new_ncols)`.
/// New elements are created with the given function `f`, so that elements at indices `(i, j)`
/// are created by calling `f(i, j)`.
pub fn resize_with(
&mut self,
new_nrows: usize,
new_ncols: usize,
f: impl FnMut(usize, usize) -> E,
) {
let mut f = f;
let old_nrows = self.nrows();
let old_ncols = self.ncols();
if new_ncols <= old_ncols {
self.erase_last_cols(new_ncols);
if new_nrows <= old_nrows {
self.erase_last_rows(new_nrows);
} else {
self.reserve_exact(new_nrows, new_ncols);
unsafe {
self.insert_last_rows_with(&mut f, new_nrows);
}
}
} else {
if new_nrows <= old_nrows {
self.erase_last_rows(new_nrows);
} else {
self.reserve_exact(new_nrows, new_ncols);
unsafe {
self.insert_last_rows_with(&mut f, new_nrows);
}
}
self.reserve_exact(new_nrows, new_ncols);
unsafe {
self.insert_last_cols_with(&mut f, new_ncols);
}
}
}
/// Truncates the matrix so that its new dimensions are `new_nrows` and `new_ncols`.
/// Both of the new dimensions must be smaller than or equal to the current dimensions.
///
/// # Panics
/// - Panics if `new_nrows > self.nrows()`.
/// - Panics if `new_ncols > self.ncols()`.
#[inline]
pub fn truncate(&mut self, new_nrows: usize, new_ncols: usize) {
assert!(all(new_nrows <= self.nrows(), new_ncols <= self.ncols()));
self.resize_with(new_nrows, new_ncols, |_, _| unreachable!());
}
/// Returns a reference to a slice over the column at the given index.
#[inline]
#[track_caller]
pub fn col_as_slice(&self, col: usize) -> GroupFor<E, &[E::Unit]> {
assert!(col < self.ncols());
let nrows = self.nrows();
let ptr = self.as_ref().ptr_at(0, col);
E::faer_map(
ptr,
#[inline(always)]
|ptr| unsafe { core::slice::from_raw_parts(ptr, nrows) },
)
}
/// Returns a mutable reference to a slice over the column at the given index.
#[inline]
#[track_caller]
pub fn col_as_slice_mut(&mut self, col: usize) -> GroupFor<E, &mut [E::Unit]> {
assert!(col < self.ncols());
let nrows = self.nrows();
let ptr = self.as_mut().ptr_at_mut(0, col);
E::faer_map(
ptr,
#[inline(always)]
|ptr| unsafe { core::slice::from_raw_parts_mut(ptr, nrows) },
)
}
/// Returns a reference to a slice over the column at the given index.
#[inline]
#[track_caller]
#[deprecated = "replaced by `Mat::col_as_slice`"]
pub fn col_ref(&self, col: usize) -> GroupFor<E, &[E::Unit]> {
self.col_as_slice(col)
}
/// Returns a mutable reference to a slice over the column at the given index.
#[inline]
#[track_caller]
#[deprecated = "replaced by `Mat::col_as_slice_mut`"]
pub fn col_mut(&mut self, col: usize) -> GroupFor<E, &mut [E::Unit]> {
self.col_as_slice_mut(col)
}
/// Returns a view over the matrix.
#[inline]
pub fn as_ref(&self) -> MatRef<'_, E> {
unsafe {
super::from_raw_parts(
self.as_ptr(),
self.nrows(),
self.ncols(),
1,
self.col_stride(),
)
}
}
/// Returns a mutable view over the matrix.
#[inline]
pub fn as_mut(&mut self) -> MatMut<'_, E> {
unsafe {
super::from_raw_parts_mut(
self.as_ptr_mut(),
self.nrows(),
self.ncols(),
1,
self.col_stride(),
)
}
}
/// Returns references to the element at the given indices, or submatrices if either `row` or
/// `col` is a range.
///
/// # Note
/// The values pointed to by the references are expected to be initialized, even if the
/// pointed-to value is not read, otherwise the behavior is undefined.
///
/// # Safety
/// The behavior is undefined if any of the following conditions are violated:
/// * `row` must be contained in `[0, self.nrows())`.
/// * `col` must be contained in `[0, self.ncols())`.
#[inline]
pub unsafe fn get_unchecked<RowRange, ColRange>(
&self,
row: RowRange,
col: ColRange,
) -> <MatRef<'_, E> as MatIndex<RowRange, ColRange>>::Target
where
for<'a> MatRef<'a, E>: MatIndex<RowRange, ColRange>,
{
self.as_ref().get_unchecked(row, col)
}
/// Returns references to the element at the given indices, or submatrices if either `row` or
/// `col` is a range, with bound checks.
///
/// # Note
/// The values pointed to by the references are expected to be initialized, even if the
/// pointed-to value is not read, otherwise the behavior is undefined.
///
/// # Panics
/// The function panics if any of the following conditions are violated:
/// * `row` must be contained in `[0, self.nrows())`.
/// * `col` must be contained in `[0, self.ncols())`.
#[inline]
pub fn get<RowRange, ColRange>(
&self,
row: RowRange,
col: ColRange,
) -> <MatRef<'_, E> as MatIndex<RowRange, ColRange>>::Target
where
for<'a> MatRef<'a, E>: MatIndex<RowRange, ColRange>,
{
self.as_ref().get(row, col)
}
/// Returns mutable references to the element at the given indices, or submatrices if either
/// `row` or `col` is a range.
///
/// # Note
/// The values pointed to by the references are expected to be initialized, even if the
/// pointed-to value is not read, otherwise the behavior is undefined.
///
/// # Safety
/// The behavior is undefined if any of the following conditions are violated:
/// * `row` must be contained in `[0, self.nrows())`.
/// * `col` must be contained in `[0, self.ncols())`.
#[inline]
pub unsafe fn get_mut_unchecked<RowRange, ColRange>(
&mut self,
row: RowRange,
col: ColRange,
) -> <MatMut<'_, E> as MatIndex<RowRange, ColRange>>::Target
where
for<'a> MatMut<'a, E>: MatIndex<RowRange, ColRange>,
{
self.as_mut().get_mut_unchecked(row, col)
}
/// Returns mutable references to the element at the given indices, or submatrices if either
/// `row` or `col` is a range, with bound checks.
///
/// # Note
/// The values pointed to by the references are expected to be initialized, even if the
/// pointed-to value is not read, otherwise the behavior is undefined.
///
/// # Panics
/// The function panics if any of the following conditions are violated:
/// * `row` must be contained in `[0, self.nrows())`.
/// * `col` must be contained in `[0, self.ncols())`.
#[inline]
pub fn get_mut<RowRange, ColRange>(
&mut self,
row: RowRange,
col: ColRange,
) -> <MatMut<'_, E> as MatIndex<RowRange, ColRange>>::Target
where
for<'a> MatMut<'a, E>: MatIndex<RowRange, ColRange>,
{
self.as_mut().get_mut(row, col)
}
/// Reads the value of the element at the given indices.
///
/// # Safety
/// The behavior is undefined if any of the following conditions are violated:
/// * `row < self.nrows()`.
/// * `col < self.ncols()`.
#[inline(always)]
#[track_caller]
pub unsafe fn read_unchecked(&self, row: usize, col: usize) -> E {
self.as_ref().read_unchecked(row, col)
}
/// Reads the value of the element at the given indices, with bound checks.
///
/// # Panics
/// The function panics if any of the following conditions are violated:
/// * `row < self.nrows()`.
/// * `col < self.ncols()`.
#[inline(always)]
#[track_caller]
pub fn read(&self, row: usize, col: usize) -> E {
self.as_ref().read(row, col)
}
/// Writes the value to the element at the given indices.
///
/// # Safety
/// The behavior is undefined if any of the following conditions are violated:
/// * `row < self.nrows()`.
/// * `col < self.ncols()`.
#[inline(always)]
#[track_caller]
pub unsafe fn write_unchecked(&mut self, row: usize, col: usize, value: E) {
self.as_mut().write_unchecked(row, col, value);
}
/// Writes the value to the element at the given indices, with bound checks.
///
/// # Panics
/// The function panics if any of the following conditions are violated:
/// * `row < self.nrows()`.
/// * `col < self.ncols()`.
#[inline(always)]
#[track_caller]
pub fn write(&mut self, row: usize, col: usize, value: E) {
self.as_mut().write(row, col, value);
}
/// Copies the values from `other` into `self`.
#[inline(always)]
#[track_caller]
pub fn copy_from(&mut self, other: impl AsMatRef<E>) {
#[track_caller]
#[inline(always)]
fn implementation<E: Entity>(this: &mut Mat<E>, other: MatRef<'_, E>) {
let mut mat = Mat::<E>::new();
mat.resize_with(
other.nrows(),
other.ncols(),
#[inline(always)]
|row, col| unsafe { other.read_unchecked(row, col) },
);
*this = mat;
}
implementation(self, other.as_mat_ref());
}
/// Fills the elements of `self` with zeros.
#[inline(always)]
#[track_caller]
pub fn fill_zero(&mut self)
where
E: ComplexField,
{
self.as_mut().fill_zero()
}
/// Fills the elements of `self` with copies of `constant`.
#[inline(always)]
#[track_caller]
pub fn fill(&mut self, constant: E) {
self.as_mut().fill(constant)
}
/// Returns a view over the transpose of `self`.
#[inline]
pub fn transpose(&self) -> MatRef<'_, E> {
self.as_ref().transpose()
}
/// Returns a view over the conjugate of `self`.
#[inline]
pub fn conjugate(&self) -> MatRef<'_, E::Conj>
where
E: Conjugate,
{
self.as_ref().conjugate()
}
/// Returns a view over the conjugate transpose of `self`.
#[inline]
pub fn adjoint(&self) -> MatRef<'_, E::Conj>
where
E: Conjugate,
{
self.as_ref().adjoint()
}
/// Returns a view over the diagonal of the matrix.
#[inline]
pub fn diagonal(&self) -> DiagRef<'_, E> {
self.as_ref().diagonal()
}
/// Returns an owning [`Mat`] of the data
#[inline]
pub fn to_owned(&self) -> Mat<E::Canonical>
where
E: Conjugate,
{
self.as_ref().to_owned()
}
/// Returns `true` if any of the elements is NaN, otherwise returns `false`.
#[inline]
pub fn has_nan(&self) -> bool
where
E: ComplexField,
{
self.as_ref().has_nan()
}
/// Returns `true` if all of the elements are finite, otherwise returns `false`.
#[inline]
pub fn is_all_finite(&self) -> bool
where
E: ComplexField,
{
self.as_ref().is_all_finite()
}
/// Returns the maximum norm of `self`.
#[inline]
pub fn norm_max(&self) -> E::Real
where
E: ComplexField,
{
crate::linalg::reductions::norm_max::norm_max((*self).as_ref())
}
/// Returns the L1 norm of `self`.
#[inline]
pub fn norm_l1(&self) -> E::Real
where
E: ComplexField,
{
self.as_ref().norm_l1()
}
/// Returns the L2 norm of `self`.
#[inline]
pub fn norm_l2(&self) -> E::Real
where
E: ComplexField,
{
self.as_ref().norm_l2()
}
/// Returns the squared L2 norm of `self`.
#[inline]
pub fn squared_norm_l2(&self) -> E::Real
where
E: ComplexField,
{
self.as_ref().squared_norm_l2()
}
/// Returns the sum of `self`.
#[inline]
pub fn sum(&self) -> E
where
E: ComplexField,
{
crate::linalg::reductions::sum::sum((*self).as_ref())
}
/// Kroneckor product of `self` and `rhs`.
///
/// This is an allocating operation; see [`faer::linalg::kron`](crate::linalg::kron) for the
/// allocation-free version or more info in general.
#[inline]
#[track_caller]
pub fn kron(&self, rhs: impl As2D<E>) -> Mat<E>
where
E: ComplexField,
{
self.as_2d_ref().kron(rhs)
}
/// Returns an iterator that provides successive chunks of the columns of a view over this
/// matrix, with each having at most `chunk_size` columns.
///
/// If the number of columns is a multiple of `chunk_size`, then all chunks have `chunk_size`
/// columns.
#[inline]
#[track_caller]
pub fn col_chunks(
&self,
chunk_size: usize,
) -> impl '_ + DoubleEndedIterator<Item = MatRef<'_, E>> {
self.as_ref().col_chunks(chunk_size)
}
/// Returns an iterator that provides successive chunks of the columns of a mutable view over
/// this matrix, with each having at most `chunk_size` columns.
///
/// If the number of columns is a multiple of `chunk_size`, then all chunks have `chunk_size`
/// columns.
#[inline]
#[track_caller]
pub fn col_chunks_mut(
&mut self,
chunk_size: usize,
) -> impl '_ + DoubleEndedIterator<Item = MatMut<'_, E>> {
self.as_mut().col_chunks_mut(chunk_size)
}
/// Returns a parallel iterator that provides successive chunks of the columns of a view over
/// this matrix, with each having at most `chunk_size` columns.
///
/// If the number of columns is a multiple of `chunk_size`, then all chunks have `chunk_size`
/// columns.
///
/// Only available with the `rayon` feature.
#[cfg(feature = "rayon")]
#[cfg_attr(docsrs, doc(cfg(feature = "rayon")))]
#[inline]
#[track_caller]
pub fn par_col_chunks(
&self,
chunk_size: usize,
) -> impl '_ + rayon::iter::IndexedParallelIterator<Item = MatRef<'_, E>> {
self.as_ref().par_col_chunks(chunk_size)
}
/// Returns a parallel iterator that provides successive chunks of the columns of a mutable view
/// over this matrix, with each having at most `chunk_size` columns.
///
/// If the number of columns is a multiple of `chunk_size`, then all chunks have `chunk_size`
/// columns.
///
/// Only available with the `rayon` feature.
#[cfg(feature = "rayon")]
#[cfg_attr(docsrs, doc(cfg(feature = "rayon")))]
#[inline]
#[track_caller]
pub fn par_col_chunks_mut(
&mut self,
chunk_size: usize,
) -> impl '_ + rayon::iter::IndexedParallelIterator<Item = MatMut<'_, E>> {
self.as_mut().par_col_chunks_mut(chunk_size)
}
/// Returns an iterator that provides successive chunks of the rows of a view over this
/// matrix, with each having at most `chunk_size` rows.
///
/// If the number of rows is a multiple of `chunk_size`, then all chunks have `chunk_size`
/// rows.
#[inline]
#[track_caller]
pub fn row_chunks(
&self,
chunk_size: usize,
) -> impl '_ + DoubleEndedIterator<Item = MatRef<'_, E>> {
self.as_ref().row_chunks(chunk_size)
}
/// Returns an iterator that provides successive chunks of the rows of a mutable view over
/// this matrix, with each having at most `chunk_size` rows.
///
/// If the number of rows is a multiple of `chunk_size`, then all chunks have `chunk_size`
/// rows.
#[inline]
#[track_caller]
pub fn row_chunks_mut(
&mut self,
chunk_size: usize,
) -> impl '_ + DoubleEndedIterator<Item = MatMut<'_, E>> {
self.as_mut().row_chunks_mut(chunk_size)
}
/// Returns a parallel iterator that provides successive chunks of the rows of a view over this
/// matrix, with each having at most `chunk_size` rows.
///
/// If the number of rows is a multiple of `chunk_size`, then all chunks have `chunk_size`
/// rows.
///
/// Only available with the `rayon` feature.
#[cfg(feature = "rayon")]
#[cfg_attr(docsrs, doc(cfg(feature = "rayon")))]
#[inline]
#[track_caller]
pub fn par_row_chunks(
&self,
chunk_size: usize,
) -> impl '_ + rayon::iter::IndexedParallelIterator<Item = MatRef<'_, E>> {
self.as_ref().par_row_chunks(chunk_size)
}
/// Returns a parallel iterator that provides successive chunks of the rows of a mutable view
/// over this matrix, with each having at most `chunk_size` rows.
///
/// If the number of rows is a multiple of `chunk_size`, then all chunks have `chunk_size`
/// rows.
///
/// Only available with the `rayon` feature.
#[cfg(feature = "rayon")]
#[cfg_attr(docsrs, doc(cfg(feature = "rayon")))]
#[inline]
#[track_caller]
pub fn par_row_chunks_mut(
&mut self,
chunk_size: usize,
) -> impl '_ + rayon::iter::IndexedParallelIterator<Item = MatMut<'_, E>> {
self.as_mut().par_row_chunks_mut(chunk_size)
}
}
impl<E: Entity> Default for Mat<E> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<E: Entity> Clone for Mat<E> {
fn clone(&self) -> Self {
let this = self.as_ref();
unsafe {
Self::from_fn(self.nrows(), self.ncols(), |i, j| {
E::faer_from_units(E::faer_deref(this.get_unchecked(i, j)))
})
}
}
}
impl<E: Entity> AsMatRef<E> for Mat<E> {
#[inline]
fn as_mat_ref(&self) -> MatRef<'_, E> {
(*self).as_ref()
}
}
impl<E: Entity> AsMatMut<E> for Mat<E> {
#[inline]
fn as_mat_mut(&mut self) -> MatMut<'_, E> {
(*self).as_mut()
}
}
impl<E: Entity> As2D<E> for Mat<E> {
#[inline]
fn as_2d_ref(&self) -> MatRef<'_, E> {
(*self).as_ref()
}
}
impl<E: Entity> As2DMut<E> for Mat<E> {
#[inline]
fn as_2d_mut(&mut self) -> MatMut<'_, E> {
(*self).as_mut()
}
}
impl<E: Entity> core::fmt::Debug for Mat<E> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.as_ref().fmt(f)
}
}
impl<E: SimpleEntity> core::ops::Index<(usize, usize)> for Mat<E> {
type Output = E;
#[inline]
#[track_caller]
fn index(&self, (row, col): (usize, usize)) -> &E {
self.as_ref().get(row, col)
}
}
impl<E: SimpleEntity> core::ops::IndexMut<(usize, usize)> for Mat<E> {
#[inline]
#[track_caller]
fn index_mut(&mut self, (row, col): (usize, usize)) -> &mut E {
self.as_mut().get_mut(row, col)
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<E: Entity> matrixcompare_core::Matrix<E> for Mat<E> {
#[inline]
fn rows(&self) -> usize {
self.nrows()
}
#[inline]
fn cols(&self) -> usize {
self.ncols()
}
#[inline]
fn access(&self) -> matrixcompare_core::Access<'_, E> {
matrixcompare_core::Access::Dense(self)
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<E: Entity> matrixcompare_core::DenseAccess<E> for Mat<E> {
#[inline]
fn fetch_single(&self, row: usize, col: usize) -> E {
self.read(row, col)
}
}
impl<E: Conjugate> ColBatch<E> for Mat<E> {
type Owned = Mat<E::Canonical>;
#[inline]
#[track_caller]
fn new_owned_zeros(nrows: usize, ncols: usize) -> Self::Owned {
Mat::zeros(nrows, ncols)
}
#[inline]
fn new_owned_copied(src: &Self) -> Self::Owned {
src.to_owned()
}
#[inline]
#[track_caller]
fn resize_owned(owned: &mut Self::Owned, nrows: usize, ncols: usize) {
owned.resize_with(nrows, ncols, |_, _| unsafe { core::mem::zeroed() });
}
}
impl<E: Conjugate> RowBatch<E> for Mat<E> {
type Owned = Mat<E::Canonical>;
#[inline]
#[track_caller]
fn new_owned_zeros(nrows: usize, ncols: usize) -> Self::Owned {
Mat::zeros(nrows, ncols)
}
#[inline]
fn new_owned_copied(src: &Self) -> Self::Owned {
src.to_owned()
}
#[inline]
#[track_caller]
fn resize_owned(owned: &mut Self::Owned, nrows: usize, ncols: usize) {
owned.resize_with(nrows, ncols, |_, _| unsafe { core::mem::zeroed() });
}
}
impl<E: Conjugate> ColBatchMut<E> for Mat<E> {}
impl<E: Conjugate> RowBatchMut<E> for Mat<E> {}