<div align="center">
<a href="https://docs.rs/faasle/latest">
<img src="https://raw.githubusercontent.com/Qazalbash/faasle/main/logos/noBgColor.png" alt="logo"></img>
</a>
</div>
# `faasle`
`faasle`[^1] is a Rust package for evaluating distances (metrics) between multidimensional arrays. It is designed to be simple, fast, and easy to use.
## Usage
```rust
use faasle::{Distance, Euclidean};
use ndarray::{ArrayD, Axis};
let x =
ArrayD::from_shape_vec(vec![2, 4], vec![0.0, 3.0, 3.0, 5.0, 11.0, 2.0, 0.0, 9.0]).unwrap();
let y =
ArrayD::from_shape_vec(vec![2, 4], vec![9.0, 2.0, 2.0, 1.0, 9.0, 5.0, 4.0, 7.0]).unwrap();
let metric = Euclidean::new();
let distance = metric.evaluate( & x, & y, Axis(1)).unwrap();
assert!(distance.abs_diff_eq(
&ArrayD::from_shape_vec(vec![2], vec![9.9498743710662, 5.744562646538029]).unwrap(),
1e-6
));
```
## Hierarchy of Types
Mathematically a distance metric is a function $d:\mathcal{X}\times\mathcal{X}\rightarrow\mathbb{R}$, where $\mathcal{X}$ is a set, such that they satisfy the following properties:
### Positivity
1. $d(x, y) \geq 0$ for all $x, y \in \mathcal{X}$,
2. $d(x, y) = 0$ if and only if $x = y$,
### Symmetry
3. $d(x, y) = d(y, x)$ for all $x, y \in \mathcal{X}$,
### Triangle Inequality
4. $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in \mathcal{X}$.
The hierarchy of types and their properties are as follows:
| Positivity | ✅ | ✅ | ✅ |
| Symmetry | ❌ | ✅ | ✅ |
| Triangle Inequality | ❌ | ❌ | ✅ |
## How to cite?
```bibtex
@software{faaslers2024github,
author = {{M}eesum {Q}azalbash},
title = {{faasle}: Rust crate for evaluating distances (metrics).},
url = {https://github.com/Qazalbash/faasle},
version = {0.0.1},
year = {2024}
}
```
distance in English. It is also the name of the infamous Coke Studio Season 10
[song][Faasle song] by Quratulain Balouch and Kaavish.
[Faasle song]: https://www.youtube.com/watch?v=9sekgEXGm-E
[Faasle meaning]: https://www.rekhta.org/urdudictionary?keyword=faasle&lang=eng