exr 1.1.0

Read and write OpenEXR files without any unsafe code
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
//! Handle compressed and uncompressed pixel byte blocks. Includes compression and decompression,
//! and some functions that completely read an image into blocks.

pub mod lines;
pub mod samples;
pub mod chunk;

use crate::compression::{ByteVec, Compression};
use crate::math::*;
use crate::error::{Result, Error, usize_to_i32, UnitResult, u64_to_usize, usize_to_u64};
use crate::meta::{MetaData, Blocks, TileIndices, OffsetTables, Headers};
use crate::block::chunk::{Chunk, Block, TileBlock, ScanLineBlock, TileCoordinates};
use crate::meta::attribute::LineOrder;
use rayon::prelude::ParallelBridge;
use rayon::iter::ParallelIterator;
use smallvec::alloc::collections::BTreeMap;
use std::convert::TryFrom;
use crate::io::{Tracking, PeekRead, Write, Data};
use std::io::{Seek, Read};
use crate::meta::header::Header;
use crate::block::lines::{LineRef, LineIndex, LineSlice, LineRefMut};


/// Specifies where a block of pixel data should be placed in the actual image.
/// This is a globally unique identifier which
/// includes the layer, level index, and pixel location.
#[derive(Clone, Copy, Eq, Hash, PartialEq, Debug)]
pub struct BlockIndex {

    /// Index of the layer.
    pub layer: usize,

    /// Index of the bottom left pixel from the block.
    pub pixel_position: Vec2<usize>,

    /// Number of pixels in this block. Stays the same across all resolution levels.
    pub pixel_size: Vec2<usize>,

    /// Index of the mip or rip level in the image.
    pub level: Vec2<usize>,
}

/// Contains a block of pixel data and where that data should be placed in the actual image.
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct UncompressedBlock {

    /// Location of the data inside the image.
    pub index: BlockIndex,

    /// Uncompressed pixel values of the whole block.
    /// One or more scan lines may be stored together as a scan line block.
    /// This byte vector contains all pixel rows, one after another.
    /// For each line in the tile, for each channel, the row values are contiguous.
    pub data: ByteVec,
}



/// Compresses and writes all lines of an image described by `meta_data` and `get_line` to the writer.
/// Flushes the writer to explicitly handle all errors.
///
/// Attention: Currently, using multi-core compression with [LineOrder::Increasing] or [LineOrder::Decreasing] in any header
/// can potentially allocate large amounts of memory while writing the file. Use unspecified line order for lower memory usage.
///
/// Does not buffer the writer, you should always pass a `BufWriter`.
/// If pedantic, throws errors for files that may produce errors in other exr readers.
#[inline]
#[must_use]
pub fn write_all_blocks_to_buffered(
    write: impl Write + Seek,
    mut headers: Headers,
    get_tile: impl Sync + Fn(&[Header], BlockIndex) -> Vec<u8>, // TODO put these three parameters into a trait?  // TODO why is this sync or send????
    mut on_progress: impl FnMut(f64),
    pedantic: bool, parallel: bool,
) -> UnitResult
{
    let has_compression = headers.iter() // TODO cache this in MetaData.has_compression?
        .any(|header| header.compression != Compression::Uncompressed);

    // if non-parallel compression, we always use increasing order anyways
    if !parallel || !has_compression {
        for header in &mut headers {
            if header.line_order == LineOrder::Unspecified {
                header.line_order = LineOrder::Increasing;
            }
        }
    }

    let mut write = Tracking::new(write);
    MetaData::write_validating_to_buffered(&mut write, headers.as_slice(), pedantic)?;

    let offset_table_start_byte = write.byte_position();

    // skip offset tables for now
    let offset_table_size: usize = headers.iter()
        .map(|header| header.chunk_count).sum();

    write.seek_write_to(write.byte_position() + offset_table_size * std::mem::size_of::<u64>())?;

    let mut offset_tables: Vec<Vec<u64>> = headers.iter()
        .map(|header| vec![0; header.chunk_count]).collect();

    let total_chunk_count = offset_table_size as f64;
    let mut processed_chunk_count = 0; // used for very simple on_progress feedback

    // line order is respected in here
    crate::block::for_compressed_blocks_in_image(headers.as_slice(), get_tile, parallel, |chunk_index, chunk|{
        offset_tables[chunk.layer_index][chunk_index] = usize_to_u64(write.byte_position()); // safe indices from `enumerate()`
        chunk.write(&mut write, headers.as_slice())?;

        on_progress(0.95 * processed_chunk_count as f64 / total_chunk_count /*write.byte_position()*/);
        processed_chunk_count += 1;

        Ok(())
    })?;

    debug_assert_eq!(processed_chunk_count, offset_table_size, "not all chunks were written");

    // write all offset tables
    write.seek_write_to(offset_table_start_byte)?;

    for offset_table in offset_tables {
        u64::write_slice(&mut write, offset_table.as_slice())?;
    }

    write.flush()?; // make sure we catch all (possibly delayed) io errors before returning
    on_progress(1.0);

    Ok(())
}


/// Reads and decompresses all chunks of a file sequentially without seeking.
/// Will not skip any parts of the file. Does not buffer the reader, you should always pass a `BufReader`.
#[inline]
#[must_use]
pub fn read_all_blocks_from_buffered<T>(
    read: impl Read + Send, // FIXME does not actually need to be send, only for parallel writing
    new: impl Fn(&[Header]) -> Result<T>,
    mut insert: impl FnMut(&mut T, &[Header], UncompressedBlock) -> UnitResult,
    on_progress: impl FnMut(f64),
    pedantic: bool, parallel: bool,
) -> Result<T>
{
    let (meta_data, chunk_count, mut read_chunk) = self::read_all_compressed_chunks_from_buffered(read, pedantic)?;
    let meta_data_ref = &meta_data;

    // TODO chunk count for ReadOnProgress!

    let read_chunks = std::iter::from_fn(move || read_chunk(meta_data_ref));
    let mut result = new(meta_data.headers.as_slice())?;

    for_decompressed_blocks_in_chunks(
        read_chunks, &meta_data, chunk_count,
        |meta, block| insert(&mut result, meta, block),
        on_progress, pedantic, parallel

    )?;

    Ok(result)
}



/// Reads ad decompresses all desired chunks of a file sequentially, possibly seeking.
/// Will skip any parts of the file that do not match the specified filter condition.
/// Will never seek if the filter condition matches all chunks.
/// Does not buffer the reader, you should always pass a `BufReader`.
/// This may leave you with an uninitialized image, when all blocks are filtered out.
#[inline]
#[must_use]
pub fn read_filtered_blocks_from_buffered<T>(
    read: impl Read + Seek + Send, // FIXME does not always need be Send
    new: impl FnOnce(&[Header]) -> Result<T>, // TODO put these into a trait?
    filter: impl Fn(&T, (usize, &Header), (usize, &TileIndices)) -> bool,
    mut insert: impl FnMut(&mut T, &[Header], UncompressedBlock) -> UnitResult,
    on_progress: impl FnMut(f64),
    pedantic: bool, parallel: bool,
) -> Result<T>
{
    let (meta_data, mut value, chunk_count, mut read_chunk) = {
        self::read_filtered_chunks_from_buffered(read, new, filter, pedantic)?
    };

    for_decompressed_blocks_in_chunks(
        std::iter::from_fn(|| read_chunk(&meta_data)), &meta_data, chunk_count,
        |meta, line| insert(&mut value, meta, line),
        on_progress, pedantic, parallel,
    )?;

    Ok(value)
}

/// Iterates through all lines of all supplied chunks.
/// Decompresses the chunks either in parallel or sequentially.
#[inline]
#[must_use]
fn for_decompressed_blocks_in_chunks(
    chunks: impl Send + Iterator<Item = Result<Chunk>>,
    meta_data: &MetaData,
    total_chunk_count: usize,
    mut for_each: impl FnMut(&[Header], UncompressedBlock) -> UnitResult,
    mut on_progress: impl FnMut(f64),
    pedantic: bool, parallel: bool,
) -> UnitResult
{
    // TODO bit-vec keep check that all pixels have been read?
    let has_compression = meta_data.headers.iter() // do not use parallel stuff for uncompressed images
        .any(|header| header.compression != Compression::Uncompressed);

    let mut processed_chunk_count = 0;

    if parallel && has_compression {
        let (sender, receiver) = std::sync::mpsc::channel();

        chunks.par_bridge()
            .map(|chunk| UncompressedBlock::decompress_chunk(chunk?, &meta_data, pedantic))
            .try_for_each_with(sender, |sender, result| {
                result.map(|block: UncompressedBlock| sender.send(block).expect("threading error"))
            })?;

        for decompressed in receiver {
            on_progress(processed_chunk_count as f64 / total_chunk_count as f64);
            processed_chunk_count += 1;

            for_each(meta_data.headers.as_slice(), decompressed)?; // allows returning `Error::Abort`
        }
    }
    else {
        for chunk in chunks {
            on_progress(processed_chunk_count as f64 / total_chunk_count as f64);
            processed_chunk_count += 1;

            let decompressed = UncompressedBlock::decompress_chunk(chunk?, &meta_data, pedantic)?;
            for_each(meta_data.headers.as_slice(), decompressed)?; // allows returning `Error::Abort`
        }
    }

    debug_assert_eq!(processed_chunk_count, total_chunk_count, "some chunks were not read");
    on_progress(1.0);
    Ok(())
}

/// Read all chunks without seeking.
/// Returns the meta data, number of chunks, and a compressed chunk reader.
/// Does not buffer the reader, you should always pass a `BufReader`.
#[inline]
#[must_use]
pub fn read_all_compressed_chunks_from_buffered<'m>(
    read: impl Read + Send, // FIXME does not actually need to be send, only for parallel writing
    pedantic: bool
) -> Result<(MetaData, usize, impl FnMut(&'m MetaData) -> Option<Result<Chunk>>)>
{
    let mut read = PeekRead::new(Tracking::new(read));
    let meta_data = MetaData::read_validated_from_buffered_peekable(&mut read, pedantic)?;

    let mut remaining_chunk_count = {
        if pedantic {
            let offset_tables = MetaData::read_offset_tables(&mut read, &meta_data.headers)?;
            validate_offset_tables(meta_data.headers.as_slice(), &offset_tables, read.byte_position())?;
            offset_tables.iter().map(|table| table.len()).sum()
        }
        else {
            usize::try_from(MetaData::skip_offset_tables(&mut read, &meta_data.headers)?)
                .expect("too large chunk count for this machine")
        }
    };

    Ok((meta_data, remaining_chunk_count, move |meta_data| {
        if remaining_chunk_count > 0 {
            remaining_chunk_count -= 1;
            Some(Chunk::read(&mut read, meta_data))
        }
        else {
            if pedantic && read.peek_u8().is_ok() {
                return Some(Err(Error::invalid("end of file expected")));
            }

            None
        }
    }))
}


/// Read all desired chunks, possibly seeking. Skips all chunks that do not match the filter.
/// Returns the compressed chunks. Does not buffer the reader, you should always pass a `BufReader`.
/// This may leave you with an uninitialized image, if all chunks are filtered out.
// TODO this must be tested more
#[inline]
#[must_use]
pub fn read_filtered_chunks_from_buffered<'m, T>(
    read: impl Read + Seek + Send, // FIXME does not always need be Send
    new: impl FnOnce(&[Header]) -> Result<T>,
    filter: impl Fn(&T, (usize, &Header), (usize, &TileIndices)) -> bool,
    pedantic: bool
) -> Result<(MetaData, T, usize, impl FnMut(&'m MetaData) -> Option<Result<Chunk>>)>
{
    let skip_read = Tracking::new(read);
    let mut read = PeekRead::new(skip_read);

    let meta_data = MetaData::read_validated_from_buffered_peekable(&mut read, pedantic)?;
    let value = new(meta_data.headers.as_slice())?;

    let offset_tables = MetaData::read_offset_tables(&mut read, &meta_data.headers)?;

    // TODO regardless of pedantic, if invalid, read all chunks instead, and filter after reading each chunk?
    if pedantic {
        validate_offset_tables(meta_data.headers.as_slice(), &offset_tables, read.byte_position())?;
    }

    let mut filtered_offsets = Vec::with_capacity((meta_data.headers.len() * 32).min(2*2048));
    for (header_index, header) in meta_data.headers.iter().enumerate() { // offset tables are stored same order as headers
        for (block_index, block) in header.blocks_increasing_y_order().enumerate() { // in increasing_y order
            if filter(&value, (header_index, header), (block_index, &block)) {
                filtered_offsets.push(offset_tables[header_index][block_index]) // safe indexing from `enumerate()`
            }
        };
    }

    filtered_offsets.sort_unstable(); // enables reading continuously if possible (is probably already sorted)
    let mut filtered_offsets = filtered_offsets.into_iter();
    let block_count = filtered_offsets.len();

    Ok((meta_data, value, block_count, move |meta_data| {
        filtered_offsets.next().map(|offset|{
            read.skip_to(usize::try_from(offset).expect("too large chunk position for this machine"))?; // no-op for seek at current position, uses skip_bytes for small amounts
            Chunk::read(&mut read, meta_data)
        })
    }))
}

fn validate_offset_tables(headers: &[Header], offset_tables: &OffsetTables, chunks_start_byte: usize) -> UnitResult {
    let max_pixel_bytes: usize = headers.iter() // when compressed, chunks are smaller, but never larger than max
        .map(|header| header.max_pixel_file_bytes())
        .sum();

    // check that each offset is within the bounds
    let end_byte = chunks_start_byte + max_pixel_bytes;
    let is_invalid = offset_tables.iter().flatten().map(|&u64| u64_to_usize(u64))
        .any(|chunk_start| chunk_start < chunks_start_byte || chunk_start > end_byte);

    if is_invalid { Err(Error::invalid("offset table")) }
    else { Ok(()) }
}


/// Iterate over all uncompressed blocks of an image.
/// The image contents are collected by the `get_line` function parameter.
/// Returns blocks in `LineOrder::Increasing`, unless the line order is requested to be decreasing.
#[inline]
#[must_use]
pub fn uncompressed_image_blocks_ordered<'l>(
    headers: &'l [Header],
    get_block: &'l (impl 'l + Sync + (Fn(&[Header], BlockIndex) -> Vec<u8>)) // TODO reduce sync requirements, at least if parrallel is false
) -> impl 'l + Iterator<Item = Result<(usize, UncompressedBlock)>> + Send // TODO reduce sync requirements, at least if parrallel is false
{
    headers.iter().enumerate()
        .flat_map(move |(layer_index, header)|{
            header.enumerate_ordered_blocks().map(move |(chunk_index, tile)|{
                let data_indices = header.get_absolute_block_pixel_coordinates(tile.location).expect("tile coordinate bug");

                let block_indices = BlockIndex {
                    layer: layer_index, level: tile.location.level_index,
                    pixel_position: data_indices.position.to_usize("data indices start").expect("data index bug"),
                    pixel_size: data_indices.size,
                };

                let block_bytes = get_block(headers, block_indices);

                // byte length is validated in block::compress_to_chunk
                Ok((chunk_index, UncompressedBlock {
                    index: block_indices,
                    data: block_bytes
                }))
            })
        })
}



/// Compress all chunks in the image described by `meta_data` and `get_line`.
/// Calls `write_chunk` for each compressed chunk, while respecting the `line_order` of the image.
///
/// Attention: Currently, using multi-core compression with `LineOrder::Increasing` or `LineOrder::Decreasing` in any header
/// will allocate large amounts of memory while writing the file. Use unspecified line order for lower memory usage.
#[inline]
#[must_use]
pub fn for_compressed_blocks_in_image(
    headers: &[Header], get_tile: impl Sync + Fn(&[Header], BlockIndex) -> Vec<u8>,
    parallel: bool, mut write_chunk: impl FnMut(usize, Chunk) -> UnitResult
) -> UnitResult
{
    let blocks = uncompressed_image_blocks_ordered(headers, &get_tile);

    let parallel = parallel && headers.iter() // do not use parallel stuff for uncompressed images
        .any(|header| header.compression != Compression::Uncompressed);

    let requires_sorting = headers.iter()
        .any(|header| header.line_order != LineOrder::Unspecified);


    if parallel {
        let (sender, receiver) = std::sync::mpsc::channel();

        blocks.par_bridge()
            .map(|result| Ok({
                let (chunk_index, block) = result?;
                let block = block.compress_to_chunk(headers)?;
                (chunk_index, block)
            }))
            .try_for_each_with(sender, |sender, result: Result<(usize, Chunk)>| {
                result.map(|block| sender.send(block).expect("threading error"))
            })?;

        if !requires_sorting {
            // FIXME does the original openexr library support unspecified line orders that have mixed up headers???
            //       Or must the header order always be contiguous without overlaps?
            for (chunk_index, compressed_chunk) in receiver {
                write_chunk(chunk_index, compressed_chunk)?;
            }
        }

        // write parallel chunks with sorting
        else {
            // the block indices, in the order which must be apparent in the file
            let mut expected_id_order = headers.iter().enumerate()
                .flat_map(|(layer, header)| header.enumerate_ordered_blocks().map(move |(chunk, _)| (layer, chunk)));

            // the next id, pulled from expected_id_order: the next block that must be written
            let mut next_id = expected_id_order.next();

            // set of blocks that have been compressed but not written yet
            let mut pending_blocks = BTreeMap::new();

            // receive the compressed blocks
            for (chunk_index, compressed_chunk) in receiver {
                pending_blocks.insert((compressed_chunk.layer_index, chunk_index), compressed_chunk);

                // write all pending blocks that are immediate successors
                while let Some(pending_chunk) = next_id.as_ref().and_then(|id| pending_blocks.remove(id)) {
                    let pending_chunk_index = next_id.unwrap().1; // must be safe in this branch
                    write_chunk(pending_chunk_index, pending_chunk)?;
                    next_id = expected_id_order.next();
                }
            }

            assert!(expected_id_order.next().is_none(), "expected more blocks bug");
            assert_eq!(pending_blocks.len(), 0, "pending blocks left after processing bug");
        }
    }

    else {
        for result in blocks {
            let (chunk_index, uncompressed_block) = result?; // enable `Error::Abort`
            let chunk = uncompressed_block.compress_to_chunk(headers)?;
            write_chunk(chunk_index, chunk)?;
        }
    }

    Ok(())
}


impl UncompressedBlock {

    /// Decompress the possibly compressed chunk and returns an `UncompressedBlock`.
    // for uncompressed data, the ByteVec in the chunk is moved all the way
    #[inline]
    #[must_use]
    pub fn decompress_chunk(chunk: Chunk, meta_data: &MetaData, pedantic: bool) -> Result<Self> {
        let header: &Header = meta_data.headers.get(chunk.layer_index)
            .ok_or(Error::invalid("chunk layer index"))?;

        let tile_data_indices = header.get_block_data_indices(&chunk.block)?;
        let absolute_indices = header.get_absolute_block_pixel_coordinates(tile_data_indices)?;

        absolute_indices.validate(Some(header.layer_size))?;

        match chunk.block {
            Block::Tile(TileBlock { compressed_pixels, .. }) |
            Block::ScanLine(ScanLineBlock { compressed_pixels, .. }) => Ok(UncompressedBlock {
                data: header.compression.decompress_image_section(header, compressed_pixels, absolute_indices, pedantic)?,
                index: BlockIndex {
                    layer: chunk.layer_index,
                    pixel_position: absolute_indices.position.to_usize("data indices start")?,
                    level: tile_data_indices.level_index,
                    pixel_size: absolute_indices.size,
                }
            }),

            _ => return Err(Error::unsupported("deep data not supported yet"))
        }
    }

    /// Consume this block by compressing it, returning a `Chunk`.
    // for uncompressed data, the ByteVec in the chunk is moved all the way
    #[inline]
    #[must_use]
    pub fn compress_to_chunk(self, headers: &[Header]) -> Result<Chunk> {
        let UncompressedBlock { data, index } = self;

        let header: &Header = headers.get(index.layer)
            .expect("block layer index bug");

        let expected_byte_size = header.channels.bytes_per_pixel * self.index.pixel_size.area(); // TODO sampling??
        if expected_byte_size != data.len() {
            panic!("get_line byte size should be {} but was {}", expected_byte_size, data.len());
        }

        let tile_coordinates = TileCoordinates {
            // FIXME this calculation should not be made here but elsewhere instead (in meta::header?)
            tile_index: index.pixel_position / header.max_block_pixel_size(),
            level_index: index.level,
        };

        let absolute_indices = header.get_absolute_block_pixel_coordinates(tile_coordinates)?;
        absolute_indices.validate(Some(header.layer_size))?;

        debug_assert_eq!(
            &header.compression.decompress_image_section(
                header,
                header.compression.compress_image_section(header, data.clone(), absolute_indices)?,
                absolute_indices,
                true
            ).unwrap(),
            &data, "compression method not round trippin'"
        );

        let compressed_data = header.compression.compress_image_section(header, data, absolute_indices)?;

        Ok(Chunk {
            layer_index: index.layer,
            block : match header.blocks {
                Blocks::ScanLines => Block::ScanLine(ScanLineBlock {
                    compressed_pixels: compressed_data,

                    // FIXME this calculation should not be made here but elsewhere instead (in meta::header?)
                    y_coordinate: usize_to_i32(index.pixel_position.y()) + header.own_attributes.layer_position.y(),
                }),

                Blocks::Tiles(_) => Block::Tile(TileBlock {
                    compressed_pixels: compressed_data,
                    coordinates: tile_coordinates,
                }),
            }
        })
    }


    // TODO make iterator
    /// Call a closure for each line of samples in this uncompressed block.
    pub fn for_lines(
        &self, header: &Header,
        mut accept_line: impl FnMut(LineRef<'_>) -> UnitResult
    ) -> UnitResult {
        for (bytes, line) in LineIndex::lines_in_block(self.index, header) {
            let line_ref = LineSlice { location: line, value: &self.data[bytes] };
            accept_line(line_ref)?;
        }

        Ok(())
    }

    // TODO from iterator??
    /// Create an uncompressed block byte vector by requesting one line of samples after another.
    pub fn collect_block_from_lines(
        header: &Header, block_index: BlockIndex,
        mut extract_line: impl FnMut(LineRefMut<'_>)
    ) -> Vec<u8> {
        let byte_count = block_index.pixel_size.area() * header.channels.bytes_per_pixel;
        let mut block_bytes = vec![0_u8; byte_count];

        for (byte_range, line_index) in LineIndex::lines_in_block(block_index, header) {
            extract_line(LineRefMut { // TODO subsampling
                value: &mut block_bytes[byte_range],
                location: line_index,
            });
        }

        block_bytes
    }

    // TODO from iterator??
    /// Create an uncompressed block by requesting one line of samples after another.
    pub fn from_lines(
        header: &Header, block_index: BlockIndex,
        extract_line: impl FnMut(LineRefMut<'_>)
    ) -> Self {
        Self {
            index: block_index,
            data: Self::collect_block_from_lines(header, block_index, extract_line)
        }
    }
}