exr 0.6.0

Read and write OpenEXR files without any unsafe code
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

//! Read and write an exr image.
//! Use `exr::image::simple` or `exr::image::full` for actually reading a complete image.

pub mod full;
pub mod simple;

use crate::meta::attributes::*;
use crate::compression::{Compression, ByteVec};
use crate::math::*;
use std::io::{Read, Seek, Write};
use crate::error::{Result, Error, PassiveResult, usize_to_i32};
use crate::meta::{MetaData, Header, TileIndices, Blocks};
use crate::chunks::{Chunk, Block, TileBlock, ScanLineBlock, TileCoordinates};
use crate::io::{PeekRead, Tracking};
use rayon::iter::{ParallelIterator, ParallelBridge};
use crate::io::Data;
use smallvec::SmallVec;
use std::ops::Range;
use std::convert::TryFrom;
use std::collections::BTreeMap;


/// Specifies where a block of pixel data should be placed in the actual image.
/// This is a globally unique identifier which
/// includes the layer, level index, and pixel location.
#[derive(Clone, Copy, Eq, Hash, PartialEq, Debug)]
pub struct BlockIndex {

    /// Index of the layer.
    pub layer: usize,

    /// Pixel position of the bottom left corner of the block.
    pub pixel_position: Vec2<usize>,

    /// Pixel size of the block.
    pub pixel_size: Vec2<usize>,

    /// Index of the mip or rip level in the image.
    pub level: Vec2<usize>,
}

/// Contains a block of pixel data and where that data should be placed in the actual image.
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct UncompressedBlock {

    /// Location of the data inside the image.
    pub index: BlockIndex,

    /// Uncompressed pixel values of the whole block.
    /// One or more scan lines may be stored together as a scan line block.
    /// This byte vector contains all pixel rows, one after another.
    /// For each line in the tile, for each channel, the row values are contiguous.
    pub data: ByteVec,
}

/// A single line of pixels.
/// May go across the whole image or just a tile section of it.
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
pub struct Line<'s> {

    /// Where this line is located inside the image.
    pub location: LineIndex,

    /// The raw bytes of the pixel line.
    /// Must be re-interpreted as slice of f16, f32, or u32,
    /// according to the channel data type.
    pub value: &'s [u8],
}

/// Specifies where a row of pixels lies inside an image.
/// This is a globally unique identifier which
/// includes the layer, channel index, and pixel location.
#[derive(Clone, Copy, Eq, PartialEq, Debug, Hash)]
pub struct LineIndex {

    /// Index of the layer.
    pub layer: usize,

    /// The channel index of the layer.
    pub channel: usize,

    /// Index of the mip or rip level in the image.
    pub level: Vec2<usize>,

    /// Position of the most left pixel of the row.
    pub position: Vec2<usize>,

    /// Number of samples in this row, that is, the number of f16, f32, or u32 values.
    pub width: usize,
}

impl<'s> Line<'s> {

    /// Read the values of this line into a slice of samples.
    /// Panics if the slice is not as long as `self.location.width`.
    pub fn read_samples<T: crate::io::Data>(&self, slice: &mut [T]) -> PassiveResult {
        debug_assert_eq!(slice.len(), self.location.width, "line value width bug");
        T::read_slice(&mut self.value.clone(), slice)
    }

    /// Iterate over all samples in this line, from left to right.
    pub fn sample_iter<T: crate::io::Data>(&self) -> impl Iterator<Item = Result<T>> + '_ {
        let mut read = self.value.clone(); // FIXME deep data
        (0..self.location.width).map(move |_| T::read(&mut read))
    }
}

impl LineIndex {

    /// Writes the samples (f16, f32, u32 values) into the writer.
    pub fn write_samples<T: crate::io::Data>(slice: &[T], write: &mut impl Write) -> PassiveResult {
        T::write_slice(write, slice)?;
        Ok(())
    }
}


/// Reads and decompresses all chunks of a file sequentially without seeking.
/// Will not skip any parts of the file. Does not buffer the reader, you should always pass a `BufReader`.
pub fn read_all_lines_from_buffered<T>(
    read: impl Read + Send, // FIXME does not actually need to be send, only for parallel writing
    parallel: bool,
    new: impl Fn(&[Header]) -> Result<T>,
    mut insert: impl FnMut(&mut T, Line<'_>) -> PassiveResult
) -> Result<T>
{
    let (meta_data, mut read_chunk) = self::read_all_compressed_chunks_from_buffered(read)?;
    let meta_data_ref = &meta_data;

    let read_chunks = std::iter::from_fn(move || read_chunk(meta_data_ref));
    let mut result = new(meta_data.headers.as_slice())?;

    for_lines_in_chunks(
        read_chunks, &meta_data, parallel,
        |line| insert(&mut result, line)

    )?;

    Ok(result)
}


/// Reads ad decompresses all desired chunks of a file sequentially, possibly seeking.
/// Will skip any parts of the file that do not match the specified filter condition.
/// Will never seek if the filter condition matches all chunks.
/// Does not buffer the reader, you should always pass a `BufReader`.
pub fn read_filtered_lines_from_buffered<T>(
    read: impl Read + Seek + Send, // FIXME does not always need be Send
    parallel: bool,
    filter: impl Fn(&Header, &TileIndices) -> bool,
    new: impl Fn(&[Header]) -> Result<T>,
    mut insert: impl FnMut(&mut T, Line<'_>) -> PassiveResult
) -> Result<T>
{
    let (meta_data, mut read_chunk) = self::read_filtered_chunks_from_buffered(read, filter)?;
    let read_chunks = std::iter::from_fn(|| read_chunk(&meta_data));
    let mut value = new(meta_data.headers.as_slice())?;

    for_lines_in_chunks(
        read_chunks, &meta_data, parallel,
        |line| insert(&mut value, line)

    )?;

    Ok(value)
}

/// Iterates through all lines of all supplied chunks.
/// Decompresses the chunks either in parallel or sequentially.
fn for_lines_in_chunks(chunks: impl Send + Iterator<Item = Result<Chunk>>, meta_data: &MetaData, parallel: bool, mut for_each: impl FnMut(Line<'_>) -> PassiveResult) -> PassiveResult {
    let has_compression = meta_data.headers.iter() // do not use parallel stuff for uncompressed images
        .find(|header| header.compression != Compression::Uncompressed).is_some();

    if parallel && has_compression {
        let (sender, receiver) = std::sync::mpsc::channel();

        chunks.par_bridge()
            .map(|chunk| UncompressedBlock::decompress_chunk(chunk?, &meta_data))
            .try_for_each_with(sender, |sender, result| {
                result.map(|block: UncompressedBlock| sender.send(block).expect("threading error"))
            })?;

        for decompressed in receiver {
            let header = meta_data.headers.get(decompressed.index.layer)
                .ok_or(Error::invalid("chunk index"))?;

            for (bytes, line) in decompressed.index.line_indices(header) {
                for_each(Line { location: line, value: &decompressed.data[bytes] })?;
            }
        }

        Ok(())
    }
    else {
        for chunk in chunks {
            let decompressed = UncompressedBlock::decompress_chunk(chunk?, &meta_data)?;
            let header = meta_data.headers.get(decompressed.index.layer)
                .ok_or(Error::invalid("chunk index"))?;

            for (bytes, line) in decompressed.index.line_indices(header) {
                for_each(Line { location: line, value: &decompressed.data[bytes] })?;
            }
        }

        Ok(())
    }
}

/// Read all chunks without seeking.
/// Returns the compressed chunks.
/// Does not buffer the reader, you should always pass a `BufReader`.
pub fn read_all_compressed_chunks_from_buffered<'m>(
    read: impl Read + Send, // FIXME does not actually need to be send, only for parallel writing
) -> Result<(MetaData, impl FnMut(&'m MetaData) -> Option<Result<Chunk>>)>
{
    let mut read = PeekRead::new(read);
    let meta_data = MetaData::read_from_buffered_peekable(&mut read)?;
    let mut remaining_chunk_count = usize::try_from(MetaData::skip_offset_tables(&mut read, &meta_data.headers)?)
        .expect("too large chunk count for this machine");

    Ok((meta_data, move |meta_data| {
        if remaining_chunk_count > 0 {
            remaining_chunk_count -= 1;
            Some(Chunk::read(&mut read, meta_data))
        }
        else {
            None
        }
    }))
}


/// Read all desired chunks, possibly seeking. Skips all chunks that do not match the filter.
/// Returns the compressed chunks. Does not buffer the reader, you should always pass a `BufReader`.
// TODO this must be tested more
pub fn read_filtered_chunks_from_buffered<'m>(
    read: impl Read + Seek + Send, // FIXME does not always need be Send
    filter: impl Fn(&Header, &TileIndices) -> bool,
) -> Result<(MetaData, impl FnMut(&'m MetaData) -> Option<Result<Chunk>>)>
{
    let skip_read = Tracking::new(read);
    let mut read = PeekRead::new(skip_read);
    let meta_data = MetaData::read_from_buffered_peekable(&mut read)?;
    let offset_tables = MetaData::read_offset_tables(&mut read, &meta_data.headers)?;

    let mut offsets = Vec::with_capacity(meta_data.headers.len() * 32);
    for (header_index, header) in meta_data.headers.iter().enumerate() { // offset tables are stored same order as headers
        for (block_index, block) in header.blocks_increasing_y_order().enumerate() { // in increasing_y order
            if filter(header, &block) {
                offsets.push(offset_tables[header_index][block_index]) // safe indexing from `enumerate()`
            }
        };
    }

    offsets.sort(); // enables reading continuously if possible
    let mut offsets = offsets.into_iter();

    Ok((meta_data, move |meta_data| {
        offsets.next().map(|offset|{
            read.skip_to(usize::try_from(offset).expect("too large chunk position for this machine"))?; // no-op for seek at current position, uses skip_bytes for small amounts
            Chunk::read(&mut read, meta_data)
        })
    }))
}



/// Iterate over all uncompressed blocks of an image.
/// The image contents are collected by the `get_line` function parameter.
/// Returns blocks in `LineOrder::Increasing`, unless the line order is requested to be decreasing.
pub fn uncompressed_image_blocks_ordered<'l>(
    meta_data: &'l MetaData,
    get_line: &'l (impl Fn(LineIndex, &mut Vec<u8>) + Send + Sync + 'l) // TODO reduce sync requirements, at least if parrallel is false
) -> impl Iterator<Item = (usize, UncompressedBlock)> + 'l + Send // TODO reduce sync requirements, at least if parrallel is false
{
    meta_data.headers.iter().enumerate()
        .flat_map(move |(layer_index, header)|{
            header.enumerate_ordered_blocks().map(move |(chunk_index, tile)|{
                let data_indices = header.get_absolute_block_indices(tile.location).expect("tile coordinate bug");

                let block_indices = BlockIndex {
                    layer: layer_index, level: tile.location.level_index,
                    pixel_position: data_indices.start.to_usize("data indices start").expect("data index bug"),
                    pixel_size: data_indices.size,
                };

                let mut block_bytes = Vec::with_capacity(header.max_block_byte_size());
                for (byte_range, line_index) in block_indices.line_indices(header) {
                    debug_assert_eq!(byte_range.start, block_bytes.len(), "line_indices byte range calculation bug");

                    get_line(line_index, &mut block_bytes);

                    debug_assert_eq!(byte_range.end, block_bytes.len(), "line_indices byte range calculation bug");
                }

                // byte length is validated in block::compress_to_chunk
                (chunk_index, UncompressedBlock {
                    index: block_indices,
                    data: block_bytes
                })
            })
        })
}



/// Compress all chunks in the image described by `meta_data` and `get_line`.
/// Calls `write_chunk` for each compressed chunk, while respecting the `line_order` of the image.
///
/// Attention: Currently, using multicore compression with `LineOrder::Increasing` or `LineOrder::Decreasing` in any header
/// will allocate large amounts of memory while writing the file. Use unspecified line order for lower memory usage.
pub fn for_compressed_blocks_in_image(
    meta_data: &MetaData, get_line: impl Fn(LineIndex, &mut Vec<u8>) + Send + Sync,
    parallel: bool, mut write_chunk: impl FnMut(usize, Chunk) -> PassiveResult
) -> PassiveResult
{
    let blocks = uncompressed_image_blocks_ordered(meta_data, &get_line);

    let parallel = parallel && meta_data.headers.iter() // do not use parallel stuff for uncompressed images
        .any(|header| header.compression != Compression::Uncompressed);

    let requires_sorting = meta_data.headers.iter()
        .any(|header| header.line_order != LineOrder::Unspecified);


    if parallel {
        let (sender, receiver) = std::sync::mpsc::channel();

        blocks.par_bridge()
            .map(|(chunk_index, block)| Ok((chunk_index, block.compress_to_chunk(meta_data)?)))
            .try_for_each_with(sender, |sender, result: Result<(usize, Chunk)>| {
                result.map(|block| sender.send(block).expect("threading error"))
            })?;

        if !requires_sorting {
            // FIXME does the original openexr library support unspecified line orders that have mixed up headers???
            //       Or must the header order always be contiguous without overlaps?
            for (chunk_index, compressed_chunk) in receiver {
                write_chunk(chunk_index, compressed_chunk)?;
            }
        }

        // write parallel chunks with sorting
        else {

            // the block indices, in the order which must be apparent in the file
            let mut expected_id_order = meta_data.headers.iter().enumerate()
                .flat_map(|(layer, header)| header.enumerate_ordered_blocks().map(move |(chunk, _)| (layer, chunk)));

            // the next id, pulled from expected_id_order: the next block that must be written
            let mut next_id = expected_id_order.next();

            // set of blocks that have been compressed but not written yet
            let mut pending_blocks = BTreeMap::new();

            // receive the compressed blocks
            for (chunk_index, compressed_chunk) in receiver {
                pending_blocks.insert((compressed_chunk.layer_index, chunk_index), compressed_chunk);

                // write all pending blocks that are immediate successors
                while let Some(pending_chunk) = next_id.as_ref().and_then(|id| pending_blocks.remove(id)) {
                    let pending_chunk_index = next_id.unwrap().1; // must be safe in this branch
                    write_chunk(pending_chunk_index, pending_chunk)?;
                    next_id = expected_id_order.next();
                }
            }

            assert!(expected_id_order.next().is_none(), "expected more blocks bug");
            assert_eq!(pending_blocks.len(), 0, "pending blocks left after processing bug");
        }
    }

    else {
        for (chunk_index, uncompressed_block) in blocks {
            let chunk = uncompressed_block.compress_to_chunk(meta_data)?;
            write_chunk(chunk_index, chunk)?;
        }
    }

    Ok(())
}

/// Compresses and writes all lines of an image described by `meta_data` and `get_line` to the writer.
///
/// Attention: Currently, using multicore compression with `LineOrder::Increasing` or `LineOrder::Decreasing` in any header
/// will allocate large amounts of memory while writing the file. Use unspecified line order for lower memory usage.
///
/// Does not buffer the writer, you should always pass a `BufWriter`.
/// If pedantic, throws errors for files that may produce errors in other exr readers.
#[must_use]
pub fn write_all_lines_to_buffered(
    write: impl Write + Seek,
    parallel: bool, pedantic: bool,
    mut meta_data: MetaData,
    get_line: impl Fn(LineIndex, &mut Vec<u8>) + Send + Sync
) -> PassiveResult
{
    // if non-parallel compression, we always use increasing order anyways
    if !parallel {
        for header in &mut meta_data.headers {
            if header.line_order == LineOrder::Unspecified {
                header.line_order = LineOrder::Increasing;
            }
        }
    }

    let mut write = Tracking::new(write);
    meta_data.write_validating_to_buffered(&mut write, pedantic)?; // also validates meta data

    let offset_table_start_byte = write.byte_position();

    // skip offset tables for now
    let offset_table_size: usize = meta_data.headers.iter()
        .map(|header| header.chunk_count).sum();

    write.seek_write_to(write.byte_position() + offset_table_size * std::mem::size_of::<u64>())?;

    let mut offset_tables: Vec<Vec<u64>> = meta_data.headers.iter()
        .map(|header| vec![0; header.chunk_count]).collect();

    // line order is respected in here
    for_compressed_blocks_in_image(&meta_data, get_line, parallel, |chunk_index, chunk|{
        offset_tables[chunk.layer_index][chunk_index] = write.byte_position() as u64; // safe indices from `enumerate()`
        chunk.write(&mut write, meta_data.headers.as_slice())
    })?;

    // write all offset tables
    write.seek_write_to(offset_table_start_byte)?;

    for offset_table in offset_tables {
        u64::write_slice(&mut write, offset_table.as_slice())?;
    }

    Ok(())
}


impl BlockIndex {

    /// Iterates the lines of this block index in interleaved fashion:
    /// For each line in this block, this iterator steps once through each channel.
    /// This is how lines are stored in a pixel data block.
    ///
    /// Does not check whether `self.layer_index`, `self.level`, `self.size` and `self.position` are valid indices.__
    // TODO be sure this cannot produce incorrect data, as this is not further checked but only handled with panics
    pub fn line_indices(&self, header: &Header) -> impl Iterator<Item=(Range<usize>, LineIndex)> {
        struct LineIter {
            layer: usize, level: Vec2<usize>, width: usize,
            end_y: usize, x: usize, channel_sizes: SmallVec<[usize; 8]>,
            byte: usize, channel: usize, y: usize,
        };

        // FIXME what about sub sampling??

        impl Iterator for LineIter {
            type Item = (Range<usize>, LineIndex);

            fn next(&mut self) -> Option<Self::Item> {
                if self.y < self.end_y {

                    // compute return value before incrementing
                    let byte_len = self.channel_sizes[self.channel];
                    let return_value = (
                        (self.byte .. self.byte + byte_len),
                        LineIndex {
                            channel: self.channel,
                            layer: self.layer,
                            level: self.level,
                            position: Vec2(self.x, self.y),
                            width: self.width,
                        }
                    );

                    { // increment indices
                        self.byte += byte_len;
                        self.channel += 1;

                        if self.channel == self.channel_sizes.len() {
                            self.channel = 0;
                            self.y += 1;
                        }
                    }

                    Some(return_value)
                }

                else {
                    None
                }
            }
        }

        let channel_line_sizes: SmallVec<[usize; 8]> = header.channels.list.iter()
            .map(move |channel| self.pixel_size.0 * channel.pixel_type.bytes_per_sample()) // FIXME is it fewer samples per tile or just fewer tiles for sampled images???
            .collect();

        LineIter {
            layer: self.layer,
            level: self.level,
            width: self.pixel_size.0,
            x: self.pixel_position.0,
            end_y: self.pixel_position.1 + self.pixel_size.1,
            channel_sizes: channel_line_sizes,

            byte: 0,
            channel: 0,
            y: self.pixel_position.1
        }
    }
}

impl UncompressedBlock {

    /// Decompress the possibly compressed chunk and returns an `UncompressedBlock`.
    // for uncompressed data, the ByteVec in the chunk is moved all the way
    pub fn decompress_chunk(chunk: Chunk, meta_data: &MetaData) -> Result<Self> {
        let header: &Header = meta_data.headers.get(chunk.layer_index)
            .ok_or(Error::invalid("chunk layer index"))?;

        let tile_data_indices = header.get_block_data_indices(&chunk.block)?;
        let absolute_indices = header.get_absolute_block_indices(tile_data_indices)?;

        absolute_indices.validate(header.data_window.size)?;

        match chunk.block {
            Block::Tile(TileBlock { compressed_pixels, .. }) |
            Block::ScanLine(ScanLineBlock { compressed_pixels, .. }) => Ok(UncompressedBlock {
                data: header.compression.decompress_image_section(header, compressed_pixels, absolute_indices)?,
                index: BlockIndex {
                    layer: chunk.layer_index,
                    pixel_position: absolute_indices.start.to_usize("data indices start")?,
                    level: tile_data_indices.level_index,
                    pixel_size: absolute_indices.size,
                }
            }),

            _ => return Err(Error::unsupported("deep data not supported yet"))
        }
    }

    /// Consume this block by compressing it, returning a `Chunk`.
    // for uncompressed data, the ByteVec in the chunk is moved all the way
    pub fn compress_to_chunk(self, meta_data: &MetaData) -> Result<Chunk> {
        let UncompressedBlock { data, index } = self;

        let header: &Header = meta_data.headers.get(index.layer)
            .expect("block layer index bug");

        let expected_byte_size = header.channels.bytes_per_pixel * self.index.pixel_size.area(); // TODO sampling??
        if expected_byte_size != data.len() {
            panic!("get_line byte size should be {} but was {}", expected_byte_size, data.len());
        }

        let compressed_data = header.compression.compress_image_section(data)?;

        Ok(Chunk {
            layer_index: index.layer,
            block : match header.blocks {
                Blocks::ScanLines => Block::ScanLine(ScanLineBlock {
                    compressed_pixels: compressed_data,

                    // FIXME this calculation should not be made here but elsewhere instead (in meta::header?)
                    y_coordinate: usize_to_i32(index.pixel_position.1) + header.data_window.start.1,
                }),

                Blocks::Tiles(tiles) => Block::Tile(TileBlock {
                    compressed_pixels: compressed_data,
                    coordinates: TileCoordinates {
                        level_index: index.level,

                        // FIXME this calculation should not be made here but elsewhere instead (in meta::header?)
                        tile_index: index.pixel_position / tiles.tile_size,
                    },

                }),
            }
        })
    }
}