1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
use crate::{
token::Token,
value::{TupleType, EMPTY_VALUE},
Context, ContextWithMutableVariables, EmptyType, FloatType, IntType, VariableMap,
};
use crate::{
error::{EvalexprError, EvalexprResult},
operator::*,
value::Value,
};
use std::mem;
// Exclude display module from coverage, as it prints not well-defined prefix notation.
#[cfg(not(tarpaulin_include))]
mod display;
mod iter;
/// A node in the operator tree.
/// The operator tree is created by the crate-level `build_operator_tree` method.
/// It can be evaluated for a given context with the `Node::eval` method.
///
/// The advantage of constructing the operator tree separately from the actual evaluation is that it can be evaluated arbitrarily often with different contexts.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let mut context = HashMapContext::new();
/// context.set_value("alpha".into(), 2.into()).unwrap(); // Do proper error handling here
/// let node = build_operator_tree("1 + alpha").unwrap(); // Do proper error handling here
/// assert_eq!(node.eval_with_context(&context), Ok(Value::from(3)));
/// ```
///
#[derive(Debug, PartialEq, Clone)]
pub struct Node {
operator: Operator,
children: Vec<Node>,
}
impl Node {
fn new(operator: Operator) -> Self {
Self {
children: Vec::new(),
operator,
}
}
fn root_node() -> Self {
Self::new(Operator::RootNode)
}
/// Returns an iterator over all identifiers in this expression.
/// Each occurrence of an identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let tree = build_operator_tree("a + b + c * f()").unwrap(); // Do proper error handling here
/// let mut iter = tree.iter_identifiers();
/// assert_eq!(iter.next(), Some("a"));
/// assert_eq!(iter.next(), Some("b"));
/// assert_eq!(iter.next(), Some("c"));
/// assert_eq!(iter.next(), Some("f"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_identifiers(&self) -> impl Iterator<Item = &str> {
self.iter().filter_map(|node| match node.operator() {
Operator::VariableIdentifierWrite { identifier }
| Operator::VariableIdentifierRead { identifier }
| Operator::FunctionIdentifier { identifier } => Some(identifier.as_str()),
_ => None,
})
}
/// Returns an iterator over all identifiers in this expression, allowing mutation.
/// Each occurrence of an identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let mut tree = build_operator_tree("a + b + c * f()").unwrap(); // Do proper error handling here
///
/// for identifier in tree.iter_identifiers_mut() {
/// *identifier = String::from("x");
/// }
///
/// let mut iter = tree.iter_identifiers();
///
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_identifiers_mut(&mut self) -> impl Iterator<Item = &mut String> {
self.iter_operators_mut()
.filter_map(|operator| match operator {
Operator::VariableIdentifierWrite { identifier }
| Operator::VariableIdentifierRead { identifier }
| Operator::FunctionIdentifier { identifier } => Some(identifier),
_ => None,
})
}
/// Returns an iterator over all variable identifiers in this expression.
/// Each occurrence of a variable identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let tree = build_operator_tree("a + f(b + c)").unwrap(); // Do proper error handling here
/// let mut iter = tree.iter_variable_identifiers();
/// assert_eq!(iter.next(), Some("a"));
/// assert_eq!(iter.next(), Some("b"));
/// assert_eq!(iter.next(), Some("c"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_variable_identifiers(&self) -> impl Iterator<Item = &str> {
self.iter().filter_map(|node| match node.operator() {
Operator::VariableIdentifierWrite { identifier }
| Operator::VariableIdentifierRead { identifier } => Some(identifier.as_str()),
_ => None,
})
}
/// Returns an iterator over all variable identifiers in this expression, allowing mutation.
/// Each occurrence of a variable identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let mut tree = build_operator_tree("a + b + c * f()").unwrap(); // Do proper error handling here
///
/// for identifier in tree.iter_variable_identifiers_mut() {
/// *identifier = String::from("x");
/// }
///
/// let mut iter = tree.iter_identifiers();
///
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("f"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_variable_identifiers_mut(&mut self) -> impl Iterator<Item = &mut String> {
self.iter_operators_mut()
.filter_map(|operator| match operator {
Operator::VariableIdentifierWrite { identifier }
| Operator::VariableIdentifierRead { identifier } => Some(identifier),
_ => None,
})
}
/// Returns an iterator over all read variable identifiers in this expression.
/// Each occurrence of a variable identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let tree = build_operator_tree("d = a + f(b + c)").unwrap(); // Do proper error handling here
/// let mut iter = tree.iter_read_variable_identifiers();
/// assert_eq!(iter.next(), Some("a"));
/// assert_eq!(iter.next(), Some("b"));
/// assert_eq!(iter.next(), Some("c"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_read_variable_identifiers(&self) -> impl Iterator<Item = &str> {
self.iter().filter_map(|node| match node.operator() {
Operator::VariableIdentifierRead { identifier } => Some(identifier.as_str()),
_ => None,
})
}
/// Returns an iterator over all read variable identifiers in this expression, allowing mutation.
/// Each occurrence of a variable identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let mut tree = build_operator_tree("d = a + f(b + c)").unwrap(); // Do proper error handling here
///
/// for identifier in tree.iter_read_variable_identifiers_mut() {
/// *identifier = String::from("x");
/// }
///
/// let mut iter = tree.iter_identifiers();
///
/// assert_eq!(iter.next(), Some("d"));
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("f"));
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_read_variable_identifiers_mut(&mut self) -> impl Iterator<Item = &mut String> {
self.iter_operators_mut()
.filter_map(|operator| match operator {
Operator::VariableIdentifierRead { identifier } => Some(identifier),
_ => None,
})
}
/// Returns an iterator over all write variable identifiers in this expression.
/// Each occurrence of a variable identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let tree = build_operator_tree("d = a + f(b + c)").unwrap(); // Do proper error handling here
/// let mut iter = tree.iter_write_variable_identifiers();
/// assert_eq!(iter.next(), Some("d"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_write_variable_identifiers(&self) -> impl Iterator<Item = &str> {
self.iter().filter_map(|node| match node.operator() {
Operator::VariableIdentifierWrite { identifier } => Some(identifier.as_str()),
_ => None,
})
}
/// Returns an iterator over all write variable identifiers in this expression, allowing mutation.
/// Each occurrence of a variable identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let mut tree = build_operator_tree("d = a + f(b + c)").unwrap(); // Do proper error handling here
///
/// for identifier in tree.iter_write_variable_identifiers_mut() {
/// *identifier = String::from("x");
/// }
///
/// let mut iter = tree.iter_identifiers();
///
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("a"));
/// assert_eq!(iter.next(), Some("f"));
/// assert_eq!(iter.next(), Some("b"));
/// assert_eq!(iter.next(), Some("c"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_write_variable_identifiers_mut(&mut self) -> impl Iterator<Item = &mut String> {
self.iter_operators_mut()
.filter_map(|operator| match operator {
Operator::VariableIdentifierWrite { identifier } => Some(identifier),
_ => None,
})
}
/// Returns an iterator over all function identifiers in this expression.
/// Each occurrence of a function identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let tree = build_operator_tree("a + f(b + c)").unwrap(); // Do proper error handling here
/// let mut iter = tree.iter_function_identifiers();
/// assert_eq!(iter.next(), Some("f"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_function_identifiers(&self) -> impl Iterator<Item = &str> {
self.iter().filter_map(|node| match node.operator() {
Operator::FunctionIdentifier { identifier } => Some(identifier.as_str()),
_ => None,
})
}
/// Returns an iterator over all function identifiers in this expression, allowing mutation.
/// Each occurrence of a variable identifier is returned separately.
///
/// # Examples
///
/// ```rust
/// use evalexpr::*;
///
/// let mut tree = build_operator_tree("d = a + f(b + c)").unwrap(); // Do proper error handling here
///
/// for identifier in tree.iter_function_identifiers_mut() {
/// *identifier = String::from("x");
/// }
///
/// let mut iter = tree.iter_identifiers();
///
/// assert_eq!(iter.next(), Some("d"));
/// assert_eq!(iter.next(), Some("a"));
/// assert_eq!(iter.next(), Some("x"));
/// assert_eq!(iter.next(), Some("b"));
/// assert_eq!(iter.next(), Some("c"));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter_function_identifiers_mut(&mut self) -> impl Iterator<Item = &mut String> {
self.iter_operators_mut()
.filter_map(|operator| match operator {
Operator::FunctionIdentifier { identifier } => Some(identifier),
_ => None,
})
}
/// Evaluates the operator tree rooted at this node with the given context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_with_context<C: Context>(&self, context: &C) -> EvalexprResult<Value> {
let mut arguments = Vec::new();
for child in self.children() {
arguments.push(child.eval_with_context(context)?);
}
self.operator().eval(&arguments, context)
}
/// Evaluates the operator tree rooted at this node with the given mutable context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_with_context_mut<C: ContextWithMutableVariables>(
&self,
context: &mut C,
) -> EvalexprResult<Value> {
let mut arguments = Vec::new();
for child in self.children() {
arguments.push(child.eval_with_context_mut(context)?);
}
self.operator().eval_mut(&arguments, context)
}
/// Evaluates the operator tree rooted at this node.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval(&self) -> EvalexprResult<Value> {
self.eval_with_context_mut(&mut VariableMap::new())
}
/// Evaluates the operator tree rooted at this node into a string with an the given context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_string_with_context<C: Context>(&self, context: &C) -> EvalexprResult<String> {
match self.eval_with_context(context) {
Ok(Value::String(string)) => Ok(string),
Ok(value) => Err(EvalexprError::expected_string(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a float with an the given context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_float_with_context<C: Context>(&self, context: &C) -> EvalexprResult<FloatType> {
match self.eval_with_context(context) {
Ok(Value::Float(float)) => Ok(float),
Ok(value) => Err(EvalexprError::expected_float(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into an integer with an the given context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_int_with_context<C: Context>(&self, context: &C) -> EvalexprResult<IntType> {
match self.eval_with_context(context) {
Ok(Value::Int(int)) => Ok(int),
Ok(value) => Err(EvalexprError::expected_int(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a float with an the given context.
/// If the result of the expression is an integer, it is silently converted into a float.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_number_with_context<C: Context>(&self, context: &C) -> EvalexprResult<FloatType> {
match self.eval_with_context(context) {
Ok(Value::Int(int)) => Ok(int as FloatType),
Ok(Value::Float(float)) => Ok(float),
Ok(value) => Err(EvalexprError::expected_number(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a boolean with an the given context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_boolean_with_context<C: Context>(&self, context: &C) -> EvalexprResult<bool> {
match self.eval_with_context(context) {
Ok(Value::Boolean(boolean)) => Ok(boolean),
Ok(value) => Err(EvalexprError::expected_boolean(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a tuple with an the given context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_tuple_with_context<C: Context>(&self, context: &C) -> EvalexprResult<TupleType> {
match self.eval_with_context(context) {
Ok(Value::Tuple(tuple)) => Ok(tuple),
Ok(value) => Err(EvalexprError::expected_tuple(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into an empty value with an the given context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_empty_with_context<C: Context>(&self, context: &C) -> EvalexprResult<EmptyType> {
match self.eval_with_context(context) {
Ok(Value::Empty) => Ok(EMPTY_VALUE),
Ok(value) => Err(EvalexprError::expected_empty(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a string with an the given mutable context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_string_with_context_mut<C: ContextWithMutableVariables>(
&self,
context: &mut C,
) -> EvalexprResult<String> {
match self.eval_with_context_mut(context) {
Ok(Value::String(string)) => Ok(string),
Ok(value) => Err(EvalexprError::expected_string(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a float with an the given mutable context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_float_with_context_mut<C: ContextWithMutableVariables>(
&self,
context: &mut C,
) -> EvalexprResult<FloatType> {
match self.eval_with_context_mut(context) {
Ok(Value::Float(float)) => Ok(float),
Ok(value) => Err(EvalexprError::expected_float(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into an integer with an the given mutable context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_int_with_context_mut<C: ContextWithMutableVariables>(
&self,
context: &mut C,
) -> EvalexprResult<IntType> {
match self.eval_with_context_mut(context) {
Ok(Value::Int(int)) => Ok(int),
Ok(value) => Err(EvalexprError::expected_int(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a float with an the given mutable context.
/// If the result of the expression is an integer, it is silently converted into a float.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_number_with_context_mut<C: ContextWithMutableVariables>(
&self,
context: &mut C,
) -> EvalexprResult<FloatType> {
match self.eval_with_context_mut(context) {
Ok(Value::Int(int)) => Ok(int as FloatType),
Ok(Value::Float(float)) => Ok(float),
Ok(value) => Err(EvalexprError::expected_number(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a boolean with an the given mutable context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_boolean_with_context_mut<C: ContextWithMutableVariables>(
&self,
context: &mut C,
) -> EvalexprResult<bool> {
match self.eval_with_context_mut(context) {
Ok(Value::Boolean(boolean)) => Ok(boolean),
Ok(value) => Err(EvalexprError::expected_boolean(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a tuple with an the given mutable context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_tuple_with_context_mut<C: ContextWithMutableVariables>(
&self,
context: &mut C,
) -> EvalexprResult<TupleType> {
match self.eval_with_context_mut(context) {
Ok(Value::Tuple(tuple)) => Ok(tuple),
Ok(value) => Err(EvalexprError::expected_tuple(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into an empty value with an the given mutable context.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_empty_with_context_mut<C: ContextWithMutableVariables>(
&self,
context: &mut C,
) -> EvalexprResult<EmptyType> {
match self.eval_with_context_mut(context) {
Ok(Value::Empty) => Ok(EMPTY_VALUE),
Ok(value) => Err(EvalexprError::expected_empty(value)),
Err(error) => Err(error),
}
}
/// Evaluates the operator tree rooted at this node into a string.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_string(&self) -> EvalexprResult<String> {
self.eval_string_with_context_mut(&mut VariableMap::new())
}
/// Evaluates the operator tree rooted at this node into a float.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_float(&self) -> EvalexprResult<FloatType> {
self.eval_float_with_context_mut(&mut VariableMap::new())
}
/// Evaluates the operator tree rooted at this node into an integer.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_int(&self) -> EvalexprResult<IntType> {
self.eval_int_with_context_mut(&mut VariableMap::new())
}
/// Evaluates the operator tree rooted at this node into a float.
/// If the result of the expression is an integer, it is silently converted into a float.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_number(&self) -> EvalexprResult<FloatType> {
self.eval_number_with_context_mut(&mut VariableMap::new())
}
/// Evaluates the operator tree rooted at this node into a boolean.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_boolean(&self) -> EvalexprResult<bool> {
self.eval_boolean_with_context_mut(&mut VariableMap::new())
}
/// Evaluates the operator tree rooted at this node into a tuple.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_tuple(&self) -> EvalexprResult<TupleType> {
self.eval_tuple_with_context_mut(&mut VariableMap::new())
}
/// Evaluates the operator tree rooted at this node into an empty value.
///
/// Fails, if one of the operators in the expression tree fails.
pub fn eval_empty(&self) -> EvalexprResult<EmptyType> {
self.eval_empty_with_context_mut(&mut VariableMap::new())
}
/// Returns the children of this node as a slice.
pub fn children(&self) -> &[Node] {
&self.children
}
/// Returns the operator associated with this node.
pub fn operator(&self) -> &Operator {
&self.operator
}
/// Returns a mutable reference to the vector containing the children of this node.
///
/// WARNING: Writing to this might have unexpected results, as some operators require certain amounts and types of arguments.
pub fn children_mut(&mut self) -> &mut Vec<Node> {
&mut self.children
}
/// Returns a mutable reference to the operator associated with this node.
///
/// WARNING: Writing to this might have unexpected results, as some operators require different amounts and types of arguments.
pub fn operator_mut(&mut self) -> &mut Operator {
&mut self.operator
}
fn has_enough_children(&self) -> bool {
Some(self.children().len()) == self.operator().max_argument_amount()
}
fn has_too_many_children(&self) -> bool {
if let Some(max_argument_amount) = self.operator().max_argument_amount() {
self.children().len() > max_argument_amount
} else {
false
}
}
fn insert_back_prioritized(&mut self, node: Node, is_root_node: bool) -> EvalexprResult<()> {
// println!(
// "Inserting {:?} into {:?}, is_root_node = {is_root_node}",
// node.operator(),
// self.operator()
// );
// println!("Self is {:?}", self);
if self.operator().precedence() < node.operator().precedence() || node.operator().is_unary() || is_root_node
// Right-to-left chaining
|| (self.operator().precedence() == node.operator().precedence() && !self.operator().is_left_to_right() && !node.operator().is_left_to_right())
{
if self.operator().is_leaf() {
Err(EvalexprError::AppendedToLeafNode)
} else if self.has_enough_children() {
// Unwrap cannot fail because is_leaf being false and has_enough_children being true implies that the operator wants and has at least one child
let last_child_operator = self.children.last().unwrap().operator();
if last_child_operator.precedence()
< node.operator().precedence() || node.operator().is_unary()
// Right-to-left chaining
|| (last_child_operator.precedence()
== node.operator().precedence() && !last_child_operator.is_left_to_right() && !node.operator().is_left_to_right())
{
// println!(
// "Recursing into {:?}",
// self.children.last().unwrap().operator()
// );
// Unwrap cannot fail because is_leaf being false and has_enough_children being true implies that the operator wants and has at least one child
self.children
.last_mut()
.unwrap()
.insert_back_prioritized(node, false)
} else {
// println!("Rotating");
if node.operator().is_leaf() {
return Err(EvalexprError::AppendedToLeafNode);
}
// Unwrap cannot fail because is_leaf being false and has_enough_children being true implies that the operator wants and has at least one child
let last_child = self.children.pop().unwrap();
// Root nodes have at most one child
// TODO I am not sure if this is the correct error
if self.operator() == &Operator::RootNode && !self.children().is_empty() {
return Err(EvalexprError::MissingOperatorOutsideOfBrace);
}
// Do not insert root nodes into root nodes.
// TODO I am not sure if this is the correct error
if self.operator() == &Operator::RootNode
&& node.operator() == &Operator::RootNode
{
return Err(EvalexprError::MissingOperatorOutsideOfBrace);
}
self.children.push(node);
let node = self.children.last_mut().unwrap();
// Root nodes have at most one child
// TODO I am not sure if this is the correct error
if node.operator() == &Operator::RootNode && !node.children().is_empty() {
return Err(EvalexprError::MissingOperatorOutsideOfBrace);
}
// Do not insert root nodes into root nodes.
// TODO I am not sure if this is the correct error
if node.operator() == &Operator::RootNode
&& last_child.operator() == &Operator::RootNode
{
return Err(EvalexprError::MissingOperatorOutsideOfBrace);
}
node.children.push(last_child);
Ok(())
}
} else {
// println!("Inserting as specified");
self.children.push(node);
Ok(())
}
} else {
Err(EvalexprError::PrecedenceViolation)
}
}
}
fn collapse_root_stack_to(
root_stack: &mut Vec<Node>,
mut root: Node,
collapse_goal: &Node,
) -> EvalexprResult<Node> {
loop {
if let Some(mut potential_higher_root) = root_stack.pop() {
// TODO I'm not sure about this >, as I have no example for different sequence operators with the same precedence
if potential_higher_root.operator().precedence() > collapse_goal.operator().precedence()
{
potential_higher_root.children.push(root);
root = potential_higher_root;
} else {
root_stack.push(potential_higher_root);
break;
}
} else {
// This is the only way the topmost root node could have been removed
return Err(EvalexprError::UnmatchedRBrace);
}
}
Ok(root)
}
fn collapse_all_sequences(root_stack: &mut Vec<Node>) -> EvalexprResult<()> {
// println!("Collapsing all sequences");
// println!("Initial root stack is: {:?}", root_stack);
let mut root = if let Some(root) = root_stack.pop() {
root
} else {
return Err(EvalexprError::UnmatchedRBrace);
};
loop {
// println!("Root is: {:?}", root);
if root.operator() == &Operator::RootNode {
// This should fire if parsing something like `4(5)`
if root.has_too_many_children() {
return Err(EvalexprError::MissingOperatorOutsideOfBrace);
}
root_stack.push(root);
break;
}
if let Some(mut potential_higher_root) = root_stack.pop() {
if root.operator().is_sequence() {
potential_higher_root.children.push(root);
root = potential_higher_root;
} else {
// This should fire if parsing something like `4(5)`
if root.has_too_many_children() {
return Err(EvalexprError::MissingOperatorOutsideOfBrace);
}
root_stack.push(potential_higher_root);
root_stack.push(root);
break;
}
} else {
// This is the only way the topmost root node could have been removed
return Err(EvalexprError::UnmatchedRBrace);
}
}
// println!("Root stack after collapsing all sequences is: {:?}", root_stack);
Ok(())
}
pub(crate) fn tokens_to_operator_tree(tokens: Vec<Token>) -> EvalexprResult<Node> {
let mut root_stack = vec![Node::root_node()];
let mut last_token_is_rightsided_value = false;
let mut token_iter = tokens.iter().peekable();
while let Some(token) = token_iter.next().cloned() {
let next = token_iter.peek().cloned();
let node = match token.clone() {
Token::Plus => Some(Node::new(Operator::Add)),
Token::Minus => {
if last_token_is_rightsided_value {
Some(Node::new(Operator::Sub))
} else {
Some(Node::new(Operator::Neg))
}
},
Token::Star => Some(Node::new(Operator::Mul)),
Token::Slash => Some(Node::new(Operator::Div)),
Token::Percent => Some(Node::new(Operator::Mod)),
Token::Hat => Some(Node::new(Operator::Exp)),
Token::Eq => Some(Node::new(Operator::Eq)),
Token::Neq => Some(Node::new(Operator::Neq)),
Token::Gt => Some(Node::new(Operator::Gt)),
Token::Lt => Some(Node::new(Operator::Lt)),
Token::Geq => Some(Node::new(Operator::Geq)),
Token::Leq => Some(Node::new(Operator::Leq)),
Token::And => Some(Node::new(Operator::And)),
Token::Or => Some(Node::new(Operator::Or)),
Token::Not => Some(Node::new(Operator::Not)),
Token::LBrace => {
root_stack.push(Node::root_node());
None
},
Token::RBrace => {
if root_stack.len() <= 1 {
return Err(EvalexprError::UnmatchedRBrace);
} else {
collapse_all_sequences(&mut root_stack)?;
root_stack.pop()
}
},
Token::Assign => Some(Node::new(Operator::Assign)),
Token::PlusAssign => Some(Node::new(Operator::AddAssign)),
Token::MinusAssign => Some(Node::new(Operator::SubAssign)),
Token::StarAssign => Some(Node::new(Operator::MulAssign)),
Token::SlashAssign => Some(Node::new(Operator::DivAssign)),
Token::PercentAssign => Some(Node::new(Operator::ModAssign)),
Token::HatAssign => Some(Node::new(Operator::ExpAssign)),
Token::AndAssign => Some(Node::new(Operator::AndAssign)),
Token::OrAssign => Some(Node::new(Operator::OrAssign)),
Token::Comma => Some(Node::new(Operator::Tuple)),
Token::Semicolon => Some(Node::new(Operator::Chain)),
Token::Identifier(identifier) => {
let mut result = Some(Node::new(Operator::variable_identifier_read(
identifier.clone(),
)));
if let Some(next) = next {
if next.is_assignment() {
result = Some(Node::new(Operator::variable_identifier_write(
identifier.clone(),
)));
} else if next.is_leftsided_value() {
result = Some(Node::new(Operator::function_identifier(identifier)));
}
}
result
},
Token::Float(float) => Some(Node::new(Operator::value(Value::Float(float)))),
Token::Int(int) => Some(Node::new(Operator::value(Value::Int(int)))),
Token::Boolean(boolean) => Some(Node::new(Operator::value(Value::Boolean(boolean)))),
Token::String(string) => Some(Node::new(Operator::value(Value::String(string)))),
};
if let Some(mut node) = node {
// Need to pop and then repush here, because Rust 1.33.0 cannot release the mutable borrow of root_stack before the end of this complete if-statement
if let Some(mut root) = root_stack.pop() {
if node.operator().is_sequence() {
// println!("Found a sequence operator");
// println!("Stack before sequence operation: {:?}, {:?}", root_stack, root);
// If root.operator() and node.operator() are of the same variant, ...
if mem::discriminant(root.operator()) == mem::discriminant(node.operator()) {
// ... we create a new root node for the next expression in the sequence
root.children.push(Node::root_node());
root_stack.push(root);
} else if root.operator() == &Operator::RootNode {
// If the current root is an actual root node, we start a new sequence
node.children.push(root);
node.children.push(Node::root_node());
root_stack.push(Node::root_node());
root_stack.push(node);
} else {
// Otherwise, we combine the sequences based on their precedences
// TODO I'm not sure about this <, as I have no example for different sequence operators with the same precedence
if root.operator().precedence() < node.operator().precedence() {
// If the new sequence has a higher precedence, it is part of the last element of the current root sequence
if let Some(last_root_child) = root.children.pop() {
node.children.push(last_root_child);
node.children.push(Node::root_node());
root_stack.push(root);
root_stack.push(node);
} else {
// Once a sequence has been pushed on top of the stack, it also gets a child
unreachable!()
}
} else {
// If the new sequence doesn't have a higher precedence, then all sequences with a higher precedence are collapsed below this one
root = collapse_root_stack_to(&mut root_stack, root, &node)?;
node.children.push(root);
root_stack.push(node);
}
}
// println!("Stack after sequence operation: {:?}", root_stack);
} else if root.operator().is_sequence() {
if let Some(mut last_root_child) = root.children.pop() {
last_root_child.insert_back_prioritized(node, true)?;
root.children.push(last_root_child);
root_stack.push(root);
} else {
// Once a sequence has been pushed on top of the stack, it also gets a child
unreachable!()
}
} else {
root.insert_back_prioritized(node, true)?;
root_stack.push(root);
}
} else {
return Err(EvalexprError::UnmatchedRBrace);
}
}
last_token_is_rightsided_value = token.is_rightsided_value();
}
// In the end, all sequences are implicitly terminated
collapse_all_sequences(&mut root_stack)?;
if root_stack.len() > 1 {
Err(EvalexprError::UnmatchedLBrace)
} else if let Some(root) = root_stack.pop() {
Ok(root)
} else {
Err(EvalexprError::UnmatchedRBrace)
}
}