exponential_integral/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
//! The exponential integral, often written $\text{Ei}$,
//! equal to the the integral of an exponentiated input over the input itself:
//! $\text{Ei}(t) = \int_{-\infty}^{t} \frac{ e^{u} }{ u } \text{d}u$
//!
//! Inspired by [GSL's implementation](https://github.com/ampl/gsl/blob/ff49e28bdffb893a1c0f6e3eff151296e0e71f82/specfunc/expint.c#L8).
#![no_std]
#![expect(non_snake_case, reason = "Proper mathematical names")]
pub mod chebyshev;
mod constants;
mod implementation;
pub mod neg {
//! Inputs less than 0.
use {
crate::{Approx, constants, implementation::neg, pos},
core::fmt,
sigma_types::{Finite, Negative},
};
/// Argument too large (negative): minimum is `constants::NXMAX`, just under -710.
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct HugeArgument(pub(crate) Negative<Finite<f64>>);
impl fmt::Display for HugeArgument {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self(ref arg) = *self;
write!(
f,
"Argument too large (negative): minimum is {}, but {arg} was supplied",
constants::NXMAX,
)
}
}
/// E1 on inputs less than 0.
/// # Errors
/// If `x` is so large that floating-point operations will fail down the line (absolute value of just over 710).
#[inline]
pub fn E1(
x: Negative<Finite<f64>>,
#[cfg(feature = "precision")] max_precision: usize,
) -> Result<Approx, HugeArgument> {
neg::E1(
x,
#[cfg(feature = "precision")]
max_precision,
)
}
/// Ei on inputs less than 0.
/// # Errors
/// If `x` is so large that floating-point operations will fail down the line (absolute value of just over 710).
#[inline(always)]
pub fn Ei(
x: Negative<Finite<f64>>,
#[cfg(feature = "precision")] max_precision: usize,
) -> Result<Approx, HugeArgument> {
#![expect(
clippy::arithmetic_side_effects,
reason = "property-based testing ensures this never happens"
)]
pos::E1(
-x,
#[cfg(feature = "precision")]
max_precision,
)
.map(|mut approx| {
approx.value = -approx.value;
approx
})
.map_err(|pos::HugeArgument(arg)| HugeArgument(-arg))
}
}
pub mod pos {
//! Inputs greater than 0.
use {
crate::{Approx, constants, implementation::pos, neg},
core::fmt,
sigma_types::{Finite, Positive},
};
/// Argument too large (positive): maximum is `constants::XMAX`, just over 710.
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct HugeArgument(pub(crate) Positive<Finite<f64>>);
impl fmt::Display for HugeArgument {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self(ref arg) = *self;
write!(
f,
"Argument too large (positive): maximum is {}, but {arg} was supplied",
constants::XMAX,
)
}
}
/// E1 on inputs less than 0.
/// # Errors
/// If `x` is so large that floating-point operations will fail down the line (absolute value of just over 710).
#[inline]
pub fn E1(
x: Positive<Finite<f64>>,
#[cfg(feature = "precision")] max_precision: usize,
) -> Result<Approx, HugeArgument> {
pos::E1(
x,
#[cfg(feature = "precision")]
max_precision,
)
}
/// Ei on inputs less than 0.
/// # Errors
/// If `x` is so large that floating-point operations will fail down the line (absolute value of just over 710).
#[inline(always)]
pub fn Ei(
x: Positive<Finite<f64>>,
#[cfg(feature = "precision")] max_precision: usize,
) -> Result<Approx, HugeArgument> {
#![expect(
clippy::arithmetic_side_effects,
reason = "property-based testing ensures this never happens"
)]
neg::E1(
-x,
#[cfg(feature = "precision")]
max_precision,
)
.map(|mut approx| {
approx.value = -approx.value;
approx
})
.map_err(|neg::HugeArgument(arg)| HugeArgument(-arg))
}
}
#[cfg(test)]
mod test;
use {
core::fmt,
sigma_types::{Finite, Negative, NonZero, Positive},
};
#[cfg(feature = "error")]
use sigma_types::NonNegative;
/// An approximate value alongside an estimate of its own approximation error.
/// # Original C code
/// ```c
/// struct gsl_sf_result_struct {
/// double val;
/// double err;
/// };
/// typedef struct gsl_sf_result_struct gsl_sf_result;
/// ```
#[expect(clippy::exhaustive_structs, reason = "Simple structure")]
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct Approx {
/// Estimate of the approximation error for `value`.
#[cfg(feature = "error")]
pub error: NonNegative<Finite<f64>>,
/// Approximate value.
pub value: Finite<f64>,
}
impl fmt::Display for Approx {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self {
#[cfg(feature = "error")]
ref error,
ref value,
} = *self;
#[cfg(feature = "error")]
{
write!(f, "{value} +/- {error}")
}
#[cfg(not(feature = "error"))]
{
write!(f, "{value}")
}
}
}
/// An approximate value alongside an estimate of its own approximation error.
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub enum Error {
/// Argument was less than the safe minimum.
ArgumentTooNegative(Negative<Finite<f64>>),
/// Argument was less than the safe maximum.
ArgumentTooPositive(Positive<Finite<f64>>),
}
impl fmt::Display for Error {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Self::ArgumentTooNegative(arg) => fmt::Display::fmt(&neg::HugeArgument(arg), f),
Self::ArgumentTooPositive(arg) => fmt::Display::fmt(&pos::HugeArgument(arg), f),
}
}
}
/// # Original C code
/// ```c
/// int gsl_sf_expint_E1_e(const double x, gsl_sf_result * result)
/// {
/// return expint_E1_impl(x, result, 0);
/// }
/// ```
///
/// # Errors
/// If `x` is so large that floating-point operations will fail down the line (absolute value of just over 710).
#[inline]
pub fn E1(
x: NonZero<Finite<f64>>,
#[cfg(feature = "precision")] max_precision: usize,
) -> Result<Approx, Error> {
implementation::E1(
x,
#[cfg(feature = "precision")]
max_precision,
)
}
/// # Original C code
/// ```c
/// int gsl_sf_expint_Ei_e(const double x, gsl_sf_result * result)
/// {
/// /* CHECK_POINTER(result) */
///
/// {
/// int status = gsl_sf_expint_E1_e(-x, result);
/// result->val = -result->val;
/// return status;
/// }
/// }
/// ```
///
/// # Errors
/// If `x` is so large that floating-point operations will fail down the line (absolute value of just over 710).
#[inline(always)]
pub fn Ei(
x: NonZero<Finite<f64>>,
#[cfg(feature = "precision")] max_precision: usize,
) -> Result<Approx, Error> {
#![expect(
clippy::arithmetic_side_effects,
reason = "property-based testing ensures this never happens"
)]
E1(
-x,
#[cfg(feature = "precision")]
max_precision,
)
.map(|mut approx| {
approx.value = -approx.value;
approx
})
}