1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2017 Lars Kroll. See the LICENSE
// file at the top-level directory of this distribution.
//
// Licensed under the MIT license
// <LICENSE or http://opensource.org/licenses/MIT>.
// This file may not be copied, modified, or distributed
// except according to those terms.

//! A thread pool `Executor` used to execute functions in parallel.
//!
//! This implementation is simply a wrapper for
//! [threadpool](https://crates.io/crates/threadpool)
//! to allow it to be used where the `Executor` trait is expected.
//!
//! # Examples
//!
//! ## Synchronized with a channel
//!
//! Every thread sends one message over the channel, which then is collected with the `take()`.
//!
//! ```
//! use executors::*;
//! use executors::threadpool_executor::ThreadPoolExecutor;
//! use std::sync::mpsc::channel;
//!
//! let n_workers = 4;
//! let n_jobs = 8;
//! let pool = ThreadPoolExecutor::new(n_workers);
//!
//! let (tx, rx) = channel();
//! for _ in 0..n_jobs {
//!     let tx = tx.clone();
//!     pool.execute(move|| {
//!         tx.send(1).expect("channel will be there waiting for the pool");
//!     });
//! }
//!
//! assert_eq!(rx.iter().take(n_jobs).fold(0, |a, b| a + b), 8);
//! ```

use super::*;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use threadpool::ThreadPool;

#[derive(Clone, Debug)]
pub struct ThreadPoolExecutor {
    pool: ThreadPool,
    active: Arc<AtomicBool>,
}

impl ThreadPoolExecutor {
    /// Creates a new thread pool capable of executing `threads` number of jobs concurrently.
    ///
    /// # Panics
    ///
    /// This function will panic if `threads` is 0.
    ///
    /// # Examples
    ///
    /// Create a new thread pool capable of executing four jobs concurrently:
    ///
    /// ```
    /// use executors::*;
    /// use executors::threadpool_executor::ThreadPoolExecutor;
    ///
    /// let pool = ThreadPoolExecutor::new(4);
    /// ```
    pub fn new(threads: usize) -> ThreadPoolExecutor {
        let pool = ThreadPool::new(threads);
        ThreadPoolExecutor {
            pool,
            active: Arc::new(AtomicBool::new(true)),
        }
    }
}

/// Create a thread pool with one thread per CPU.
/// On machines with hyperthreading,
/// this will create one thread per hyperthread.
#[cfg(feature = "defaults")]
impl Default for ThreadPoolExecutor {
    fn default() -> Self {
        ThreadPoolExecutor::new(num_cpus::get())
    }
}

impl Executor for ThreadPoolExecutor {
    fn execute<F>(&self, job: F)
    where
        F: FnOnce() + Send + 'static,
    {
        if self.active.load(Ordering::SeqCst) {
            self.pool.execute(job);
        } else {
            warn!("Ignoring job as pool is shutting down.");
        }
    }

    fn shutdown_async(&self) {
        if self.active.compare_and_swap(true, false, Ordering::SeqCst) {
            debug!("Shutting down executor.");
        } else {
            warn!("Executor was already shut down!");
        }
    }

    fn shutdown_borrowed(&self) -> Result<(), String> {
        if self.active.compare_and_swap(true, false, Ordering::SeqCst) {
            debug!("Waiting for pool to shut down.");
            self.pool.join();
            debug!("Pool was shut down.");
            Result::Ok(())
        } else {
            Result::Err(String::from("Pool was already shut down!"))
        }
    }
}

#[cfg(test)]
mod tests {
    use env_logger;

    use super::*;
    use std::time::Duration;

    const LABEL: &'static str = "Threadpool";

    #[test]
    fn test_debug() {
        let exec = ThreadPoolExecutor::new(2);
        crate::tests::test_debug(&exec, LABEL);
    }

    #[test]
    fn test_defaults() {
        crate::tests::test_defaults::<ThreadPoolExecutor>(LABEL);
    }

    #[test]
    fn run_with_two_threads() {
        let _ = env_logger::try_init();

        let latch = Arc::new(CountdownEvent::new(2));
        let pool = ThreadPoolExecutor::new(2);
        let latch2 = latch.clone();
        let latch3 = latch.clone();
        pool.execute(move || ignore(latch2.decrement()));
        pool.execute(move || ignore(latch3.decrement()));
        let res = latch.wait_timeout(Duration::from_secs(5));
        assert_eq!(res, 0);
    }

    #[test]
    fn keep_pool_size() {
        let _ = env_logger::try_init();

        let latch = Arc::new(CountdownEvent::new(2));
        let pool = ThreadPoolExecutor::new(1);
        let latch2 = latch.clone();
        let latch3 = latch.clone();
        pool.execute(move || ignore(latch2.decrement()));
        pool.execute(move || panic!("test panic please ignore"));
        pool.execute(move || ignore(latch3.decrement()));
        let res = latch.wait_timeout(Duration::from_secs(5));
        assert_eq!(res, 0);
    }

    #[test]
    fn shutdown_from_worker() {
        let _ = env_logger::try_init();

        let pool = ThreadPoolExecutor::new(1);
        let pool2 = pool.clone();
        let latch = Arc::new(CountdownEvent::new(2));
        let latch2 = latch.clone();
        let latch3 = latch.clone();
        let stop_latch = Arc::new(CountdownEvent::new(1));
        let stop_latch2 = stop_latch.clone();
        pool.execute(move || ignore(latch2.decrement()));
        pool.execute(move || {
            pool2.shutdown_async();
            ignore(stop_latch2.decrement());
        });
        let res = stop_latch.wait_timeout(Duration::from_secs(1));
        assert_eq!(res, 0);
        pool.execute(move || ignore(latch3.decrement()));
        let res = latch.wait_timeout(Duration::from_secs(1));
        assert_eq!(res, 1);
    }

    #[test]
    fn shutdown_external() {
        let _ = env_logger::try_init();

        let pool = ThreadPoolExecutor::new(1);
        let pool2 = pool.clone();
        let latch = Arc::new(CountdownEvent::new(2));
        let latch2 = latch.clone();
        let latch3 = latch.clone();
        pool.execute(move || ignore(latch2.decrement()));
        pool.shutdown().expect("pool to shut down");
        pool2.execute(move || ignore(latch3.decrement()));
        let res = latch.wait_timeout(Duration::from_secs(1));
        assert_eq!(res, 1);
    }
}