excelstream 0.10.0

High-performance streaming Excel library - Read/write large XLSX files with ultra-low memory (2.7 MB for any size)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# ExcelStream Improvement Plan - REVISED 2025

This document outlines the **next-generation improvements** for excelstream library, focusing on **unique, high-impact features** that leverage our ultra-low memory streaming architecture.

## Current Status (v0.9.1)

**Core Strengths:**
- **World-class memory efficiency**: 2.7 MB constant memory (any file size!)
-**High performance**: 31-69K rows/sec throughput
-**Production-tested**: 430K+ rows real-world usage
-**Streaming architecture**: Zero temp files (v0.9.0)
-**Rich features**: Styling (14 styles), formulas, protection, merging
-**Comprehensive docs**: 28+ examples, full API documentation

**Completed Phases:**
- ✅ v0.8.0: Custom XML parser (removed calamine dependency)
- ✅ v0.9.0: Zero-temp streaming ZIP writer (84% memory reduction)
- ✅ v0.9.1: Cell styling + worksheet protection fixed

---

## 🚀 NEW VISION: Cloud-Native Big Data Excel Library

**Goal**: Make ExcelStream the **go-to library** for:
- Cloud-native data pipelines (S3, GCS, Azure)
- Big data processing (Parquet, Arrow, streaming databases)
- Real-time data exports (incremental updates)
- AI/ML workflows (Pandas, Polars integration)

**Differentiation**: Generic Excel libraries focus on UI features (charts, images). We focus on **data pipeline excellence**.

---

## PHASE 4 - Cloud-Native Features (v0.10.0) 🔥 PRIORITY

**Target**: Streaming to/from cloud storage without local files

### 4.1 S3/Cloud Storage Direct Streaming ⭐⭐⭐⭐⭐

**Status**: 🔜 Next up

**Problem**: Current workflow requires local file → upload to S3:
```rust
// ❌ Current: Write to disk then upload
let mut writer = ExcelWriter::new("temp.xlsx")?;
writer.write_rows(&data)?;
writer.save()?;
s3_client.upload("temp.xlsx", "s3://bucket/report.xlsx").await?;
fs::remove_file("temp.xlsx")?; // Waste disk space!
```

**Solution**: Stream directly to cloud storage:
```rust
// ✅ New: Stream directly to S3 - NO local file!
use excelstream::cloud::S3ExcelWriter;

let mut writer = S3ExcelWriter::new()
    .bucket("my-bucket")
    .key("reports/monthly.xlsx")
    .region("us-east-1")
    .build()
    .await?;

for row in database.stream_rows() {
    writer.write_row_typed(&row)?;
}

writer.save().await?; // Upload multipart stream to S3
```

**Benefits**:
- ✅ Zero disk usage (perfect for Lambda/containers)
- ✅ Works in read-only filesystems
- ✅ Multipart upload for large files
- ✅ Same 2.7 MB memory guarantee

**Implementation**:
- [ ] `CloudWriter` trait for generic cloud storage
- [ ] S3 backend using `aws-sdk-s3`
- [ ] Multipart upload with streaming chunks
- [ ] GCS backend (optional)
- [ ] Azure Blob backend (optional)
- [ ] Local filesystem backend (for testing)

**Estimated Time**: 2-3 weeks
**Complexity**: Medium-High
**Impact**: 🔥 **Game changer** for serverless/cloud workflows

---

### 4.2 Cloud Storage Reader

```rust
use excelstream::cloud::S3ExcelReader;

// Stream from S3 - constant memory!
let mut reader = S3ExcelReader::new()
    .bucket("analytics")
    .key("data/sales_2024.xlsx")
    .build()
    .await?;

for row in reader.rows("Sheet1")? {
    // Process 1GB+ file with only 12 MB RAM!
}
```

**Benefits**:
- ✅ Process cloud files without downloading
- ✅ Constant memory for any S3 file size
- ✅ Range requests for efficient streaming

**Estimated Time**: 1-2 weeks
**Complexity**: Medium

---

## PHASE 5 - Incremental Updates (v0.10.0) ⭐⭐⭐⭐⭐

**Target**: Append/update existing files without full rewrite

### 5.1 Incremental Append Mode 🔥

**Status**: 🔜 High priority

**Problem**: Current workflow requires full rewrite:
```rust
// ❌ Current: Must read entire file, modify, rewrite
let mut reader = ExcelReader::open("monthly_log.xlsx")?;
let mut rows: Vec<_> = reader.rows("Log")?.collect();
rows.push(new_row); // Add new data

let mut writer = ExcelWriter::new("monthly_log.xlsx")?; // Overwrite!
for row in rows {
    writer.write_row(&row)?;
}
writer.save()?; // Full rewrite - slow for large files!
```

**Solution**: Append mode without reading old data:
```rust
// ✅ New: Append to existing file - no full rewrite!
use excelstream::append::AppendableExcelWriter;

let mut writer = AppendableExcelWriter::open("monthly_log.xlsx")?;
writer.select_sheet("Log")?;

// Append new rows - only writes NEW data!
writer.append_row(&["2024-12-10", "New entry", "Active"])?;
writer.save()?; // Only updates modified parts - FAST!
```

**Benefits**:
- **10-100x faster** for large files (no full rewrite)
- ✅ Constant memory (doesn't load existing data)
- ✅ Perfect for logs, daily updates, incremental ETL
- ✅ Atomic operations (safe for concurrent access)

**Use Cases**:
- Daily data appends to monthly/yearly reports
- Real-time logging to Excel
- Incremental ETL pipelines
- Multi-user data collection (with locking)

**Implementation**:
- [ ] Parse ZIP central directory to locate sheet XML
- [ ] Extract last row number from sheet.xml
- [ ] Modify sheet.xml with new rows (streaming)
- [ ] Update ZIP central directory (replace sheet entry)
- [ ] Preserve styles, formulas, formatting
- [ ] File locking for safe concurrent access

**Estimated Time**: 3-4 weeks
**Complexity**: High (ZIP manipulation complexity)
**Impact**: 🔥 **No Rust library does this!**

---

### 5.2 In-Place Cell Updates

```rust
// Update specific cells without rewriting entire file
let mut updater = ExcelUpdater::open("inventory.xlsx")?;

updater.update_cell("Stock", "B5", CellValue::Int(150))?;
updater.update_range("Stock", "D2:D100", |cell| {
    // Recalculate prices with +10% tax
    if let CellValue::Float(price) = cell {
        CellValue::Float(price * 1.1)
    } else {
        cell
    }
})?;

updater.save()?; // Only modified cells written
```

**Estimated Time**: 2-3 weeks
**Complexity**: High

---

## PHASE 6 - Big Data Integration (v0.11.0)

**Target**: Seamless interop with modern data formats

### 6.1 Partitioned Dataset Export

```rust
// Auto-split large exports (Excel limit: 1M rows/sheet)
let mut writer = PartitionedExcelWriter::new("output/sales")
    .partition_by_rows(1_000_000) // 1M rows per file
    .or_partition_by_size("100MB")
    .with_naming_pattern("{base}_part_{index}.xlsx")
    .build()?;

// Write 10M rows → Creates 10 files automatically
for row in database.query("SELECT * FROM sales") {
    writer.write_row_typed(&row)?; // Auto-creates new files
}

writer.save()?;
// Result:
// sales_part_0.xlsx (1M rows)
// sales_part_1.xlsx (1M rows)
// ...
// sales_part_9.xlsx (1M rows)
```

**Estimated Time**: 1-2 weeks
**Complexity**: Medium

---

### 6.2 Parquet/Arrow Conversion

```rust
// Stream from Parquet → Excel (constant memory)
ExcelConverter::from_parquet("big_data.parquet")
    .to_excel("report.xlsx")
    .with_compression(6)
    .stream()?; // No intermediate loading!

// Multi-format merge
ExcelConverter::merge()
    .add_csv("sales.csv", "Sales")
    .add_parquet("metrics.parquet", "Metrics")
    .add_json_lines("logs.jsonl", "Logs")
    .to_excel("combined.xlsx")
    .stream()?;
```

**Estimated Time**: 2-3 weeks
**Complexity**: Medium-High

---

### 6.3 Pandas DataFrame Interop (PyO3)

```rust
// Python binding for streaming pandas DataFrames
#[pyfunction]
fn dataframe_to_excel(df: &PyAny, path: &str) -> PyResult<()> {
    let mut writer = ExcelWriter::new(path)?;

    // Stream directly from pandas - no intermediate conversion
    for row in df.iter_rows()? {
        writer.write_row_py(row)?;
    }

    writer.save()?;
    Ok(())
}
```

**Benefits**: AI/ML pipelines, data science workflows
**Estimated Time**: 2-3 weeks
**Complexity**: Medium

---

## PHASE 7 - Developer Experience (v0.11.0)

### 7.1 Schema-First Code Generation

```rust
// Derive macro for type-safe Excel exports
#[derive(ExcelSchema)]
#[excel(sheet_name = "Invoices")]
struct Invoice {
    #[excel(column = "A", header = "ID", style = "Bold")]
    id: i64,

    #[excel(column = "B", header = "Amount", style = "Currency")]
    amount: f64,

    #[excel(column = "C", header = "Date", format = "yyyy-mm-dd")]
    date: NaiveDate,

    #[excel(skip)] // Don't export this field
    internal_note: String,
}

// Auto-generated writer with compile-time safety
let mut writer = Invoice::excel_writer("invoices.xlsx")?;
writer.write(&invoice)?; // Type-safe, auto-styled!
```

**Estimated Time**: 3-4 weeks
**Complexity**: High (proc macros)

---

### 7.2 SQL-Like Query API

```rust
// Query Excel files like a database
let result = ExcelQuery::from("sales.xlsx")
    .select(&["Product", "SUM(Amount) as Total"])
    .where_clause("Category = 'Electronics'")
    .group_by("Product")
    .order_by("Total DESC")
    .limit(10)
    .execute()?;

result.to_excel("top_products.xlsx")?;
```

**Estimated Time**: 4-5 weeks
**Complexity**: Very High

---

## PHASE 8 - Performance & Concurrency (v0.12.0)

### 8.1 Parallel Batch Writer

```rust
use rayon::prelude::*;

let writer = ParallelExcelWriter::new("output.xlsx")?
    .with_threads(8)
    .build()?;

// Process 10M rows in parallel
(0..10_000_000)
    .into_par_iter()
    .map(|i| generate_row(i))
    .write_to_excel(&mut writer)?;

writer.save()?; // Auto-merge batches
```

**Expected**: 5-8x speedup on multi-core systems
**Estimated Time**: 2-3 weeks

---

### 8.2 Streaming Metrics & Observability

```rust
let mut writer = ExcelWriter::new("data.xlsx")?
    .with_progress_callback(|metrics| {
        tracing::info!(
            rows = metrics.rows_written,
            memory_mb = metrics.memory_mb,
            throughput = metrics.rows_per_sec,
            "Export progress"
        );
    })?;
```

**Estimated Time**: 1 week
**Complexity**: Low

---

## PHASE 9 - Advanced Excel Features (v1.0.0)

**Note**: These are traditional Excel features, lower priority than our unique cloud/streaming features.

### 9.1 Dynamic Custom Styling

```rust
let custom_style = CellStyleBuilder::new()
    .background_color(Color::Rgb(255, 100, 50))
    .font_color(Color::Rgb(255, 255, 255))
    .font_size(14)
    .bold()
    .border(BorderStyle::Double, Color::Black)
    .build();
```

**Estimated Time**: 2-3 weeks

---

### 9.2 Conditional Formatting

```rust
writer.add_conditional_format(
    "B2:B1000",
    ConditionalFormat::DataBar {
        color: Color::Blue,
        show_value: true,
    }
)?;

writer.add_conditional_format(
    "C2:C1000",
    ConditionalFormat::ColorScale {
        min: Color::Red,
        mid: Some(Color::Yellow),
        max: Color::Green,
    }
)?;
```

**Estimated Time**: 3-4 weeks

---

### 9.3 Charts & Images

```rust
let chart = Chart::new(ChartType::ColumnClustered)
    .add_series("Sales", "A2:A10", "B2:B10")
    .title("Q4 2024 Results");

writer.insert_chart(0, (5, 5), &chart)?;
writer.insert_image("Dashboard", 2, 5, "logo.png")?;
```

**Estimated Time**: 4-6 weeks

---

### 9.4 Data Validation & Hyperlinks

```rust
// Dropdown lists
writer.add_data_validation(
    "D2:D1000",
    DataValidation::List(&["Active", "Pending", "Inactive"])
)?;

// Hyperlinks
writer.write_cell_link(
    2, 3,
    "Click here",
    LinkTarget::Url("https://example.com")
)?;
```

**Estimated Time**: 1-2 weeks each

---

## Roadmap Timeline

```
v0.10.0 (Q1 2025 - 2-3 months):
├── S3/Cloud Storage Direct Streaming ⭐⭐⭐⭐⭐ [Priority #1]
├── Incremental Append Mode ⭐⭐⭐⭐⭐ [Priority #2]
├── Cloud Storage Reader ⭐⭐⭐⭐
└── Streaming Metrics/Observability ⭐⭐⭐

v0.11.0 (Q2 2025 - 2-3 months):
├── Partitioned Dataset Export ⭐⭐⭐⭐
├── Parquet/Arrow Conversion ⭐⭐⭐⭐
├── Schema Code Generation ⭐⭐⭐⭐
└── In-Place Cell Updates ⭐⭐⭐

v0.12.0 (Q3 2025 - 2-3 months):
├── Pandas Interop (PyO3) ⭐⭐⭐⭐
├── Parallel Batch Writer ⭐⭐⭐⭐
├── SQL Query API ⭐⭐⭐⭐
└── Dynamic Custom Styling ⭐⭐⭐

v1.0.0 (Q4 2025 - 3-4 months):
├── Conditional Formatting ⭐⭐⭐
├── Charts ⭐⭐⭐
├── Images ⭐⭐⭐
└── Data Validation ⭐⭐⭐
```

---

## Success Metrics

### Adoption Metrics
- 🎯 1,000+ GitHub stars (currently ~50)
- 🎯 10,000+ monthly downloads on crates.io
- 🎯 Used in production by 100+ companies
- 🎯 3+ featured blog posts/articles

### Technical Excellence
- ✅ Zero clippy warnings
- ✅ >85% test coverage
- ✅ All examples working
-<10ms response time for issues
- ✅ Monthly releases during active development

### Performance Goals
- ✅ Maintain 2.7 MB memory for streaming writes
-<15 MB memory for streaming reads
- 🎯 50K+ rows/sec write throughput
- 🎯 5-8x speedup with parallel writer
- 🎯 S3 streaming within 10% of local disk speed

---

## Why This Plan is Better

**Old Plan Focus**: Charts, images, rich text (generic Excel features)
- ❌ Commodity features every library has
- ❌ Doesn't leverage our memory efficiency strength
- ❌ Limited market differentiation

**New Plan Focus**: Cloud-native, big data, streaming (unique features)
- **No other Rust library** does S3 direct streaming
-**No library** does incremental append (ZIP modification)
- ✅ Leverages our ultra-low memory architecture
- ✅ Targets modern data engineering workflows
- ✅ Aligns with cloud/serverless/Kubernetes trends

**Market Positioning**:
- Old plan: "Another Excel library with charts"
- New plan: **"The Excel library for cloud-native data pipelines"**

---

## Dependencies Strategy

### New Dependencies (Optional)
```toml
[dependencies]
# Cloud storage (optional features)
aws-sdk-s3 = { version = "1.0", optional = true }
google-cloud-storage = { version = "0.16", optional = true }
azure_storage_blobs = { version = "0.18", optional = true }

# Big data formats (optional)
parquet = { version = "51.0", optional = true }
arrow = { version = "51.0", optional = true }

# Python binding (optional)
pyo3 = { version = "0.20", optional = true }

[features]
cloud-s3 = ["dep:aws-sdk-s3"]
cloud-gcs = ["dep:google-cloud-storage"]
cloud-azure = ["dep:azure_storage_blobs"]
big-data = ["dep:parquet", "dep:arrow"]
python = ["dep:pyo3"]
```

---

## Notes

- **Priority**: Cloud streaming > Incremental append > Big data > Traditional Excel features
- **Philosophy**: Solve hard problems others won't (ZIP modification, streaming S3)
- **Target audience**: Data engineers, DevOps, cloud-native developers
- **Differentiation**: Memory efficiency + cloud integration = unique value prop

---

**Last Updated:** 2024-12-10
**Current Version:** v0.9.1
**Next Milestone:** v0.10.0 (S3 Streaming + Incremental Append)

---

**Let's build the future of cloud-native Excel processing! 🚀**