polycube_packing/polycube_packing.rs
1//! The following program finds all ways to pack 25 [Y pentacubes] into
2//! a $5\times5\times5$ box. (Exercise 340 in Section 7.2.2.1 of Knuth's
3//! [_The Art of Computer Programming_ **4B** (2022)][taocp4b], Part 2,
4//! illustrates the 29 pentacubes.) We formulate this task as an exact
5//! cover problem, with one item for each of the $125$ positions to cover,
6//! and one option for each [legal placement] of a piece. The program can
7//! be readily adapted to fill an arbitrary shape with a given set of
8//! polycubes.
9//!
10//! Chapter 8 of R. Honsberger's book [_Mathematical Gems II_][mgems] (1976)
11//! provides a good introduction to the techniques for solving polycube packing
12//! puzzles.
13//!
14//! [Y pentacube]: https://en.wikipedia.org/wiki/Polycube
15//! [taocp4b]: https://www-cs-faculty.stanford.edu/~knuth/taocp.html#vol4
16//! [legal placement]: `is_in_bounds`
17//! [mgems]: https://bookstore.ams.org/dol-2
18
19use exact_covers::{DlSolver, Solver};
20use smallvec::SmallVec;
21use std::collections::HashSet;
22use std::iter;
23use std::ops::ControlFlow;
24
25/// A point in the cubic lattice.
26type Position = (i8, i8, i8);
27
28/// A solid object formed by joining $1\times 1\times 1$ cubies face to face.
29#[derive(Debug, Eq, PartialEq, Hash, Clone)]
30struct Polycube(
31 /// The positions occupied by the polycube.
32 SmallVec<Position, { Self::INLINE_CAP }>,
33);
34
35impl Polycube {
36 /// If the number of cubies in this polycube exceeds this threshold,
37 /// the buffer containing their positions is allocated on the heap.
38 const INLINE_CAP: usize = 5; // In this way the array of positions takes 15 bytes,
39 // which is one less than the space required
40 // for a 64-bit pointer and a capacity field.
41
42 /// Creates a polycube with one or more cubies, without copying any data.
43 ///
44 /// This is the `const` version of [`Polycube::from`].
45 pub const fn from_const(positions: [Position; Self::INLINE_CAP]) -> Self {
46 Self(SmallVec::from_buf(positions))
47 }
48
49 /// Applies a transformation to the polycube.
50 pub fn transform(&self, f: impl FnMut(Position) -> Position) -> Self {
51 Self(self.0.iter().copied().map(f).collect())
52 }
53
54 /// Returns the translate of the polycube whose cubie coordinates are
55 /// nonnegative and as small as possible.
56 ///
57 /// This shape is called the _aspect_ of the polycube. Section 1.3 of
58 /// the book [_Tilings and Patterns_][tap] by B. Grünbaum, G. C. Shephard
59 /// (W. H. Freeman, 1987) discusses the number of distinct aspects
60 /// of the tiles in particular classes of tessellations.
61 ///
62 /// [tap]: https://dl.acm.org/doi/10.5555/19304
63 pub fn aspect(&self) -> Self {
64 let x_min = self.0.iter().map(|(x, _, _)| x).min().unwrap();
65 let y_min = self.0.iter().map(|(_, y, _)| y).min().unwrap();
66 let z_min = self.0.iter().map(|(_, _, z)| z).min().unwrap();
67 self.transform(|(x, y, z)| (x - x_min, y - y_min, z - z_min))
68 }
69
70 /// Constructs the set of aspects corresponding to all 3D-rotations of
71 /// the polycube.
72 ///
73 /// D. E. Knuth called these the _base placements_ of a polycube in
74 /// exercise 7.2.2.1–266 of [_The Art of Computer Programming_ **4B**,
75 /// Part 2][taocp] (Addison-Wesley, 2022).
76 ///
77 /// [taocp]: https://www-cs-faculty.stanford.edu/~knuth/taocp.html#vol4
78 pub fn base_placements(&self) -> HashSet<Polycube> {
79 // The group of symmetries of a polycube is isomorphic to a subgroup of
80 // the 24 3D-rotations of a cube, which is generated by the following
81 // two elementary transformations:
82 // 1. $90^\circ$ rotation about the $z$-axis, $(x,y,z)\mapsto(y,x_\text{max}-x,z)$.
83 // 2. Reflection about the $x=y=z$ diagonal: $(x,y,z)\mapsto(y,z,x)$.
84 // To see why, use the fact that the rotational symmetries of a cube
85 // form a group that is isomorphic to the symmetric group $S_4$ on 4
86 // elements. (Notice that the rotations of a cube permute its diagonals.)
87 // In this way transformations 1 and 2 correspond respectively to
88 // the permutations $\pi=(1234)$ and $\sigma=(142)$ under some
89 // appropriate naming of the cube vertices. And $\{\pi,\sigma\}$ is
90 // a generator of $S_4$.
91 let mut placements = HashSet::with_capacity(24);
92 let mut to_visit = Vec::with_capacity(8);
93 to_visit.push(self.aspect());
94 while let Some(shape) = to_visit.pop() {
95 let x_max = shape.0.iter().map(|(x, _, _)| x).max().unwrap();
96 let rotation = shape.transform(|(x, y, z)| (y, x_max - x, z));
97 if !placements.contains(&rotation) {
98 to_visit.push(rotation);
99 }
100
101 let reflection = shape.transform(|(x, y, z)| (y, z, x));
102 if !placements.contains(&reflection) {
103 to_visit.push(reflection);
104 }
105
106 placements.insert(shape);
107 }
108 placements
109 }
110
111 /// Returns the number of cubies in the polycube.
112 pub fn cubie_count(&self) -> usize {
113 self.0.len()
114 }
115}
116
117impl From<&[Position]> for Polycube {
118 /// Creates a polycube with one or more cubies.
119 fn from(positions: &[Position]) -> Self {
120 assert!(!positions.is_empty(), "a polycube has one or more cubies");
121 Self(SmallVec::from_slice(positions))
122 }
123}
124
125impl From<Vec<Position>> for Polycube {
126 /// Creates a polycube with one or more cubies.
127 fn from(positions: Vec<Position>) -> Self {
128 assert!(!positions.is_empty(), "a polycube has one or more cubies");
129 Self(positions.into())
130 }
131}
132
133/// The Y pentacube, with the vector normal to its bottom face—the face that is
134/// farthest-apart from the pentacube's center of mass—pointing downwards and
135/// the cubie not in the long bar appearing in the up-west position.
136const Y: Polycube = Polycube::from_const([(0, 2, 0), (1, 0, 0), (1, 1, 0), (1, 2, 0), (1, 3, 0)]);
137
138/// Returns `true` if and only if the given polycube lies inside the
139/// $l\times m\times n$ cuboid cornered at the origin.
140fn is_in_bounds(polycube: &Polycube, l: i8, m: i8, n: i8) -> bool {
141 let x_min = *polycube.0.iter().map(|(x, _, _)| x).min().unwrap();
142 let y_min = *polycube.0.iter().map(|(_, y, _)| y).min().unwrap();
143 let z_min = *polycube.0.iter().map(|(_, _, z)| z).min().unwrap();
144 let x_max = *polycube.0.iter().map(|(x, _, _)| x).max().unwrap();
145 let y_max = *polycube.0.iter().map(|(_, y, _)| y).max().unwrap();
146 let z_max = *polycube.0.iter().map(|(_, _, z)| z).max().unwrap();
147 0 <= x_min && x_max < l && 0 <= y_min && y_max < m && 0 <= z_min && z_max < n
148}
149
150fn main() {
151 // Define the items of the exact cover problem, namely the $lmn$ cells of
152 // the $l\times m\times n$ cuboid.
153 let (l, m, n) = (5i8, 5i8, 5i8);
154 let positions = (0..l)
155 .flat_map(|x| iter::repeat(x).zip(0..m))
156 .flat_map(|y| iter::repeat(y).zip(0..n))
157 .map(|((x, y), z)| (x, y, z))
158 .collect::<Vec<_>>();
159
160 let mut solver: DlSolver<Position, ()> = DlSolver::new(&positions, &[]);
161 // For each base placement $P$ of the Y pentacube, and for each offset
162 // $(x_0,y_0,z_0)$ such that the piece $P'=P+(x_0,y_0,z_0)$ lies within the
163 // $l\times m\times n$ cuboid cornered at the origin, define an option whose
164 // primary items are the cells of $P'$. We break symmetry by constraining
165 // a particular cubie of the first pentacube to be at $L_\infty$ distance
166 // $\le2$ from the origin.
167 let placements = Y.base_placements();
168 let mut first = true;
169 for placement in placements {
170 for (x_0, y_0, z_0) in &positions {
171 if first && (*x_0 > 2 || *y_0 > 2 || *z_0 > 2) {
172 continue;
173 }
174 let shifted = placement.transform(|(x, y, z)| (x + x_0, y + y_0, z + z_0));
175 if is_in_bounds(&shifted, l, m, n) {
176 solver.add_option(&shifted.0, []);
177 }
178 }
179 first = false;
180 }
181
182 let mut count = 0;
183 let mut polycube = Vec::with_capacity(Y.cubie_count());
184 solver.solve(|mut solution| {
185 // Print the solution, which consists of a set of 25 pentacubes.
186 print!("[");
187 while solution.next(&mut polycube) {
188 print!("[");
189 if let Some(((&last, _), elements)) = polycube.split_last() {
190 for (&cubie, _) in elements {
191 print!("[{},{},{}],", cubie.0, cubie.1, cubie.2);
192 }
193 print!("[{},{},{}]", last.0, last.1, last.2);
194 }
195 print!("],");
196 }
197 println!("]");
198 count += 1;
199 ControlFlow::Continue(())
200 });
201 println!("found {count} packings");
202}
203
204#[cfg(test)]
205mod tests {
206 use super::*;
207
208 #[test]
209 fn y_base_placements() {
210 let placements = Y.base_placements();
211 assert_eq!(placements.len(), 24, "the Y pentacube has 24 3D-rotations");
212 for placement in &placements {
213 assert_eq!(
214 placement,
215 &placement.aspect(),
216 "a base placement is an aspect"
217 );
218 }
219 }
220}