euclid 0.19.9

Geometry primitives
Documentation
use approxeq::ApproxEq;
use num_traits::Float;
use trig::Trig;
use {TypedRotation3D, TypedTransform3D, TypedVector3D, UnknownUnit};

/// A rigid transformation. All lengths are preserved under such a transformation.
///
///
/// Internally, this is a rotation and a translation, with the rotation
/// applied first (i.e. `Rotation * Translation`, in row-vector notation)
///
/// This can be more efficient to use over full matrices, especially if you
/// have to deal with the decomposed quantities often.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(C)]
pub struct TypedRigidTransform3D<T, Src, Dst> {
    pub rotation: TypedRotation3D<T, Src, Dst>,
    pub translation: TypedVector3D<T, Dst>,
}

pub type RigidTransform3D<T> = TypedRigidTransform3D<T, UnknownUnit, UnknownUnit>;

// All matrix multiplication in this file is in row-vector notation,
// i.e. a vector `v` is transformed with `v * T`, and if you want to apply `T1`
// before `T2` you use `T1 * T2`

impl<T: Float + ApproxEq<T>, Src, Dst> TypedRigidTransform3D<T, Src, Dst> {
    /// Construct a new rigid transformation, where the `rotation` applies first
    #[inline]
    pub fn new(rotation: TypedRotation3D<T, Src, Dst>, translation: TypedVector3D<T, Dst>) -> Self {
        Self {
            rotation,
            translation,
        }
    }

    /// Construct an identity transform
    #[inline]
    pub fn identity() -> Self {
        Self {
            rotation: TypedRotation3D::identity(),
            translation: TypedVector3D::zero(),
        }
    }

    /// Construct a new rigid transformation, where the `translation` applies first
    #[inline]
    pub fn new_from_reversed(
        translation: TypedVector3D<T, Src>,
        rotation: TypedRotation3D<T, Src, Dst>,
    ) -> Self {
        // T * R
        //   = (R * R^-1) * T * R
        //   = R * (R^-1 * T * R)
        //   = R * T'
        //
        // T' = (R^-1 * T * R) is also a translation matrix
        // It is equivalent to the translation matrix obtained by rotating the
        // translation by R

        let translation = rotation.rotate_vector3d(&translation);
        Self {
            rotation,
            translation,
        }
    }

    #[inline]
    pub fn from_rotation(rotation: TypedRotation3D<T, Src, Dst>) -> Self {
        Self {
            rotation,
            translation: TypedVector3D::zero(),
        }
    }

    #[inline]
    pub fn from_translation(translation: TypedVector3D<T, Dst>) -> Self {
        Self {
            translation,
            rotation: TypedRotation3D::identity(),
        }
    }

    /// Decompose this into a translation and an rotation to be applied in the opposite order
    ///
    /// i.e., the translation is applied _first_
    #[inline]
    pub fn decompose_reversed(&self) -> (TypedVector3D<T, Src>, TypedRotation3D<T, Src, Dst>) {
        // self = R * T
        //      = R * T * (R^-1 * R)
        //      = (R * T * R^-1) * R)
        //      = T' * R
        //
        // T' = (R^ * T * R^-1) is T rotated by R^-1

        let translation = self.rotation.inverse().rotate_vector3d(&self.translation);
        (translation, self.rotation)
    }

    /// Returns the multiplication of the two transforms such that
    /// other's transformation applies after self's transformation.
    ///
    /// i.e., this produces `self * other` in row-vector notation
    #[inline]
    pub fn post_mul<Dst2>(
        &self,
        other: &TypedRigidTransform3D<T, Dst, Dst2>,
    ) -> TypedRigidTransform3D<T, Src, Dst2> {
        // self = R1 * T1
        // other = R2 * T2
        // result = R1 * T1 * R2 * T2
        //        = R1 * (R2 * R2^-1) * T1 * R2 * T2
        //        = (R1 * R2) * (R2^-1 * T1 * R2) * T2
        //        = R' * T' * T2
        //        = R' * T''
        //
        // (R2^-1 * T2 * R2^) = T' = T2 rotated by R2
        // R1 * R2  = R'
        // T' * T2 = T'' = vector addition of translations T2 and T'

        let t_prime = other
            .rotation
            .rotate_vector3d(&self.translation);
        let r_prime = self.rotation.post_rotate(&other.rotation);
        let t_prime2 = t_prime + other.translation;
        TypedRigidTransform3D {
            rotation: r_prime,
            translation: t_prime2,
        }
    }

    /// Returns the multiplication of the two transforms such that
    /// self's transformation applies after other's transformation.
    ///
    /// i.e., this produces `other * self` in row-vector notation
    #[inline]
    pub fn pre_mul<Src2>(
        &self,
        other: &TypedRigidTransform3D<T, Src2, Src>,
    ) -> TypedRigidTransform3D<T, Src2, Dst> {
        other.post_mul(&self)
    }

    /// Inverts the transformation
    #[inline]
    pub fn inverse(&self) -> TypedRigidTransform3D<T, Dst, Src> {
        // result = (self)^-1
        //        = (R * T)^-1
        //        = T^-1 * R^-1
        //        = (R^-1 * R) * T^-1 * R^-1
        //        = R^-1 * (R * T^-1 * R^-1)
        //        = R' * T'
        //
        // T' = (R * T^-1 * R^-1) = (-T) rotated by R^-1
        // R' = R^-1
        //
        // An easier way of writing this is to use new_from_reversed() with R^-1 and T^-1

        TypedRigidTransform3D::new_from_reversed(
            -self.translation,
            self.rotation.inverse(),
        )
    }

    pub fn to_transform(&self) -> TypedTransform3D<T, Src, Dst>
    where
        T: Trig,
    {
        self.translation
            .to_transform()
            .pre_mul(&self.rotation.to_transform())
    }
}

impl<T: Float + ApproxEq<T>, Src, Dst> From<TypedRotation3D<T, Src, Dst>>
    for TypedRigidTransform3D<T, Src, Dst>
{
    fn from(rot: TypedRotation3D<T, Src, Dst>) -> Self {
        Self::from_rotation(rot)
    }
}

impl<T: Float + ApproxEq<T>, Src, Dst> From<TypedVector3D<T, Dst>>
    for TypedRigidTransform3D<T, Src, Dst>
{
    fn from(t: TypedVector3D<T, Dst>) -> Self {
        Self::from_translation(t)
    }
}

#[cfg(test)]
mod test {
    use super::RigidTransform3D;
    use {Rotation3D, TypedTransform3D, Vector3D};

    #[test]
    fn test_rigid_construction() {
        let translation = Vector3D::new(12.1, 17.8, -5.5);
        let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3);

        let rigid = RigidTransform3D::new(rotation, translation);
        assert!(rigid
            .to_transform()
            .approx_eq(&translation.to_transform().pre_mul(&rotation.to_transform())));

        let rigid = RigidTransform3D::new_from_reversed(translation, rotation);
        assert!(rigid.to_transform().approx_eq(
            &translation
                .to_transform()
                .post_mul(&rotation.to_transform())
        ));
    }

    #[test]
    fn test_rigid_decomposition() {
        let translation = Vector3D::new(12.1, 17.8, -5.5);
        let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3);

        let rigid = RigidTransform3D::new(rotation, translation);
        let (t2, r2) = rigid.decompose_reversed();
        assert!(rigid
            .to_transform()
            .approx_eq(&t2.to_transform().post_mul(&r2.to_transform())));
    }

    #[test]
    fn test_rigid_inverse() {
        let translation = Vector3D::new(12.1, 17.8, -5.5);
        let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3);

        let rigid = RigidTransform3D::new(rotation, translation);
        let inverse = rigid.inverse();
        assert!(rigid
            .post_mul(&inverse)
            .to_transform()
            .approx_eq(&TypedTransform3D::identity()));
        assert!(inverse
            .to_transform()
            .approx_eq(&rigid.to_transform().inverse().unwrap()));
    }

    #[test]
    fn test_rigid_multiply() {
        let translation = Vector3D::new(12.1, 17.8, -5.5);
        let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3);
        let translation2 = Vector3D::new(9.3, -3.9, 1.1);
        let rotation2 = Rotation3D::unit_quaternion(0.1, 0.2, 0.3, -0.4);
        let rigid = RigidTransform3D::new(rotation, translation);
        let rigid2 = RigidTransform3D::new(rotation2, translation2);

        assert!(rigid
            .post_mul(&rigid2)
            .to_transform()
            .approx_eq(&rigid.to_transform().post_mul(&rigid2.to_transform())));
        assert!(rigid
            .pre_mul(&rigid2)
            .to_transform()
            .approx_eq(&rigid.to_transform().pre_mul(&rigid2.to_transform())));
    }
}