etherparse 0.8.3

A library for parsing & writing a bunch of packet based protocols (EthernetII, IPv4, IPv6, UDP, TCP ...).
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
use super::super::*;

#[test]
fn read() {
    use std::io::Cursor;
    const INPUT: Ipv6Header = Ipv6Header {
        traffic_class: 1,
        flow_label: 0x81806,
        payload_length: 0x8021,
        next_header: 30,
        hop_limit: 40,
        source: [1, 2, 3, 4, 5, 6, 7, 8,
                 9,10,11,12,13,14,15,16],
        destination: [21,22,23,24,25,26,27,28,
                      29,30,31,32,33,34,35,36]
    };
    //serialize
    let mut buffer: Vec<u8> = Vec::with_capacity(20);
    INPUT.write(&mut buffer).unwrap();
    assert_eq!(40, buffer.len());

    //deserialize
    let mut cursor = Cursor::new(&buffer);
    let result = IpHeader::read(&mut cursor).unwrap();
    assert_eq!(40, cursor.position());

    assert_matches!(result, IpHeader::Version6(INPUT));
}

#[test]
fn read_write() {
    use std::io::Cursor;

    let input = Ipv6Header {
        traffic_class: 1,
        flow_label: 0x81806,
        payload_length: 0x8021,
        next_header: 30,
        hop_limit: 40,
        source: [1, 2, 3, 4, 5, 6, 7, 8,
                 9,10,11,12,13,14,15,16],
        destination: [21,22,23,24,25,26,27,28,
                      29,30,31,32,33,34,35,36]
    };
    //serialize
    let mut buffer: Vec<u8> = Vec::with_capacity(20);
    input.write(&mut buffer).unwrap();
    //deserialize (with read)
    {
        let result = Ipv6Header::read(&mut Cursor::new(&buffer)).unwrap();
        //check equivalence
        assert_eq!(input, result);
    }
    //deserialize (with read_from_slice)
    {
        let result = Ipv6Header::read_from_slice(&buffer).unwrap();
        assert_eq!(input, result.0);
        assert_eq!(&buffer[buffer.len()..], result.1);
    }
}

#[test]
fn write_errors() {
    use crate::WriteError::ValueError;
    use crate::ValueError::*;
    use crate::ErrorField::*;
    fn base() -> Ipv6Header {
        Ipv6Header {
            traffic_class: 1,
            flow_label: 0x201806,
            payload_length: 0x8021,
            next_header: 30,
            hop_limit: 40,
            source: [1, 2, 3, 4, 5, 6, 7, 8,
                     9,10,11,12,13,14,15,16],
            destination: [21,22,23,24,25,26,27,28,
                          29,30,31,32,33,34,35,36]
        }
    };

    fn test_write(input: &Ipv6Header) -> Result<(), WriteError> {
        let mut buffer: Vec<u8> = Vec::with_capacity(20);
        input.write(&mut buffer)
    };
    //flow label
    assert_matches!(
        test_write(&{
            let mut value = base();
            value.flow_label = 0x100000;
            value
        }), 
        Err(ValueError(U32TooLarge{value: 0x100000, max: 0xFFFFF, field: Ipv6FlowLabel})));
}

#[test]
fn read_error() {
    //wrong ip version
    {
        let buffer: [u8;20] = [0;20];
        let result = Ipv6Header::read(&mut io::Cursor::new(&buffer));
        assert_matches!(result, Err(ReadError::Ipv6UnexpectedVersion(0)))
    }
    //io error
    {
        let buffer: [u8;1] = [0x60];
        let result = Ipv6Header::read(&mut io::Cursor::new(&buffer));
        assert_matches!(result, Err(ReadError::IoError(_)));
    }
}

#[test]
fn skip_extension() {

    const HOP_BY_HOP: u8 = IpTrafficClass::IPv6HeaderHopByHop as u8;
    const ROUTE: u8 = IpTrafficClass::IPv6RouteHeader as u8;
    const FRAG: u8 = IpTrafficClass::IPv6FragmentationHeader as u8;

    use std::io::Cursor;
    {
        let buffer: [u8; 8] = [0;8];
        let mut cursor = Cursor::new(&buffer);
        assert_matches!(Ipv6Header::skip_header_extension(&mut cursor, HOP_BY_HOP), Ok(0));
        assert_eq!(8, cursor.position());
    }
    {
        let buffer: [u8; 8*3] = [
            4,2,0,0, 0,0,0,0,
            0,0,0,0, 0,0,0,0,
            0,0,0,0, 0,0,0,0,
        ];
        let mut cursor = Cursor::new(&buffer);
        assert_matches!(Ipv6Header::skip_header_extension(&mut cursor, ROUTE), Ok(4));
        assert_eq!(8*3, cursor.position());
    }
    {
        //fragmentation header has a fixed size -> the 2 should be ignored
        let buffer: [u8; 8*3] = [
            4,2,0,0, 0,0,0,0,
            0,0,0,0, 0,0,0,0,
            0,0,0,0, 0,0,0,0,
        ];
        let mut cursor = Cursor::new(&buffer);
        assert_matches!(Ipv6Header::skip_header_extension(&mut cursor, FRAG), Ok(4));
        assert_eq!(8, cursor.position());
    }
}

#[test]
fn skip_all_extensions() {
    use crate::io::Cursor;
    //extension header values
    use crate::IpTrafficClass::*;
    //based on RFC 8200 4.1. Extension Header Order
    // & IANA https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml
    const EXTENSION_IDS: [u8;12] = [
        IPv6HeaderHopByHop as u8,
        IPv6DestinationOptions as u8,
        IPv6RouteHeader as u8,
        IPv6FragmentationHeader as u8, //3
        IPv6AuthenticationHeader as u8,
        IPv6EncapSecurityPayload as u8,
        IPv6DestinationOptions as u8,
        MobilityHeader as u8,
        Hip as u8,
        Shim6 as u8,
        ExperimentalAndTesting0 as u8,
        ExperimentalAndTesting1 as u8,
    ];
    const UDP: u8 = Udp as u8;

    //no & single skipping
    {
        let buffer: [u8; 8*4] = [
            UDP,2,0,0, 0,0,0,0, //set next to udp
            0,0,0,0,   0,0,0,0,
            0,0,0,0,   0,0,0,0,
            1,2,3,4,   5,6,7,8,
        ];

        for i_as16 in 0..((u8::max_value() as u16) + 1) {
            let i = i_as16 as u8; //note: I would prefer to use the inclusive range ..= but this feature is not yet marked as stable -> replace when stable
            let mut cursor = Cursor::new(&buffer);
            let reader_result = Ipv6Header::skip_all_header_extensions(&mut cursor, i);
            let slice_result = Ipv6Header::skip_all_header_extensions_in_slice(&buffer, i).unwrap();
            match EXTENSION_IDS.iter().find(|&&x| x == i) {
                Some(_) => {
                    //ipv6 header extension -> expect skip
                    assert_matches!(reader_result, Ok(UDP));
                    assert_matches!(slice_result.0, UDP);

                    let len = if i == IPv6FragmentationHeader as u8 {
                        //fragmentation header has a fixed size
                        8
                    } else {
                        buffer.len() - 8
                    };
                    assert_eq!(len, cursor.position() as usize);
                    assert_eq!(&buffer[len..], slice_result.1);
                },
                None => {
                    //non ipv6 header expect no read movement and direct return
                    assert_matches!(reader_result, Ok(next) => assert_eq!(i, next));
                    assert_eq!(0, cursor.position());

                    assert_eq!(i, slice_result.0);
                    assert_eq!(&buffer, slice_result.1);
                }
            }
        }

    }

    //creates an buffer filled with extension headers with the given ids
    fn create_buffer(ids: &[u8]) -> Vec<u8> {
        const FRAG: u8 = IPv6FragmentationHeader as u8;
        let mut prev: u8 = ids[0];
        let mut result = Vec::with_capacity(ids.len()*8*4);
        for (index, value) in ids[1..].iter().enumerate() {
            let len: u8 = if prev == FRAG {
                0
            } else {
                (index % 3) as u8
            };

            //write first line
            result.extend_from_slice(&[*value, len, 0, 0,  0, 0, 0, 0]);
            
            //fill rest with dummy data
            for _ in 0..len {
                result.extend_from_slice(&[0, 0, 0, 0,  0, 0, 0, 0]);
            }

            //cache prev
            prev = *value;
        }

        //add some dummy data to the end (useful for checking that the returned slice are correct)
        result.extend_from_slice(&[0, 0, 0, 0,  0, 0, 0, 0]);

        result
    }

    //skip maximum number
    {
        let ids = {
            let mut ids = Vec::with_capacity(EXTENSION_IDS.len() + 1);
            ids.extend_from_slice(&EXTENSION_IDS);
            ids.push(UDP);
            ids
        };
        let buffer = create_buffer(&ids);

        //reader
        {
            let mut cursor = Cursor::new(&buffer);
            let result = Ipv6Header::skip_all_header_extensions(&mut cursor, ids[0]);
            assert_matches!(result, Ok(UDP));
            assert_eq!(buffer.len() - 8, cursor.position() as usize);
        }
        //slice
        {
            
            let result = Ipv6Header::skip_all_header_extensions_in_slice(&buffer, ids[0]).unwrap();
            assert_eq!(result.0, UDP);
            assert_eq!(result.1, &buffer[buffer.len() - 8 .. ]);
        }
    }
    //trigger "too many" error
    {
        let ids = {
            let mut ids = Vec::with_capacity(EXTENSION_IDS.len() + 2);
            ids.extend_from_slice(&EXTENSION_IDS);
            ids.push(EXTENSION_IDS[0]);
            ids.push(UDP);
            ids
        };
        let buffer = create_buffer(&ids);

        //reader
        {
            let mut cursor = Cursor::new(&buffer);
            let result = Ipv6Header::skip_all_header_extensions(&mut cursor, ids[0]);
            assert_matches!(result, Err(ReadError::Ipv6TooManyHeaderExtensions));
        }
        //slice
        {
            let result = Ipv6Header::skip_all_header_extensions_in_slice(&buffer, ids[0]);
            assert_matches!(result, Err(ReadError::Ipv6TooManyHeaderExtensions));
        }
    }
    //trigger missing unexpected eof
    {
        let ids = {
            let mut ids = Vec::with_capacity(EXTENSION_IDS.len() + 1);
            ids.extend_from_slice(&EXTENSION_IDS);
            ids.push(UDP);
            ids
        };
        let buffer = create_buffer(&ids);
        //reader
        {
            let mut cursor = Cursor::new(&buffer[..buffer.len() - 9]);
            let result = Ipv6Header::skip_all_header_extensions(&mut cursor, ids[0]);
            assert_matches!(result, Err(ReadError::IoError(_)));
        }
        //slice
        {
            let result = Ipv6Header::skip_all_header_extensions_in_slice(&buffer[..buffer.len() - 9], ids[0]);
            assert_matches!(result, Err(ReadError::UnexpectedEndOfSlice(_)));
        }
    }
}

#[test]
fn set_payload_lengt() {
    let mut header = Ipv6Header {
        traffic_class: 0,
        flow_label:  0,
        payload_length: 0,
        next_header: 0,
        hop_limit: 0,
        source: [0;16],
        destination: [0;16]
    };
    assert_matches!(header.set_payload_length(0), Ok(()));
    assert_eq!(header.payload_length, 0);

    const MAX: usize = std::u16::MAX as usize;
    assert_matches!(header.set_payload_length(MAX), Ok(()));
    assert_eq!(header.payload_length, MAX as u16);
    
    const OVER_MAX: usize = MAX + 1;
    assert_matches!(header.set_payload_length(OVER_MAX), 
                    Err(ValueError::Ipv6PayloadLengthTooLarge(OVER_MAX)));
}

proptest! {
    #[test]
    fn from_slice(ref input in ipv6_any()) {
        //serialize
        let mut buffer: Vec<u8> = Vec::with_capacity(20);
        input.write(&mut buffer).unwrap();

        //check that a too small slice triggers an error
        assert_matches!(Ipv6HeaderSlice::from_slice(&buffer[..buffer.len()-1]), Err(ReadError::UnexpectedEndOfSlice(Ipv6Header::SERIALIZED_SIZE)));

        //check that all the values are read correctly
        use std::net::Ipv6Addr;
        let slice = Ipv6HeaderSlice::from_slice(&buffer).unwrap();
        assert_eq!(slice.version(), 6);
        assert_eq!(slice.traffic_class(), input.traffic_class);
        assert_eq!(slice.flow_label(), input.flow_label);
        assert_eq!(slice.payload_length(), input.payload_length);
        assert_eq!(slice.next_header(), input.next_header);
        assert_eq!(slice.hop_limit(), input.hop_limit);
        assert_eq!(slice.source(), input.source);
        assert_eq!(slice.source_addr(), Ipv6Addr::from(input.source));
        assert_eq!(slice.destination(), input.destination);
        assert_eq!(slice.destination_addr(), Ipv6Addr::from(input.destination));

        //check that the convertion back to a header struct results in the same struct
        assert_eq!(&slice.to_header(), input);
    }
}

#[test]
fn from_slice_bad_version() {
    //write an ipv4 header and check that the bad version number is detected
    let input = {
        let mut input: Ipv4Header = Default::default();
        //set the options to increase the size, 
        //otherwise an unexpected end of slice error is returned
        input.set_options(
            &[0;24]
        ).unwrap();
        input
    };
    
    //serialize
    let mut buffer: Vec<u8> = Vec::with_capacity(44);
    input.write_raw(&mut buffer).unwrap();

    //check that the unexpected version id is detected
    use crate::ReadError::*;
    assert_matches!(Ipv6HeaderSlice::from_slice(&buffer[..]), Err(Ipv6UnexpectedVersion(4)));
}

#[test]
fn extension_from_slice() {
    //extension header values
    use crate::IpTrafficClass::*;
    const FRAG: u8 = IPv6FragmentationHeader as u8;
    const UDP: u8 = Udp as u8;
    let buffer: [u8; 8*3] = [
        UDP,2,0,0, 0,0,0,0, //set next to udp
        0,0,0,0,   0,0,0,0,
        0,0,0,0,   0,0,0,0,
    ];
    //fragmentation header
    {
        let slice = Ipv6ExtensionHeaderSlice::from_slice(FRAG, &buffer).unwrap();
        assert_eq!(slice.next_header(), UDP);
        assert_eq!(slice.slice(), &buffer[..8])
    }
    //other headers (using length field)
    {
        const EXTENSION_IDS_WITH_LENGTH: [u8;5] = [
            IPv6HeaderHopByHop as u8,
            IPv6DestinationOptions as u8,
            IPv6RouteHeader as u8,
            IPv6AuthenticationHeader as u8,
            IPv6EncapSecurityPayload as u8
        ];
        for id in EXTENSION_IDS_WITH_LENGTH.iter() {
            let slice = Ipv6ExtensionHeaderSlice::from_slice(*id, &buffer).unwrap();
            assert_eq!(slice.next_header(), UDP);
            assert_eq!(slice.slice(), &buffer[..])
        }
    }
}

#[test]
fn extension_from_slice_bad_length() {
    //extension header values
    use crate::IpTrafficClass::*;
    use self::ReadError::*;
    const FRAG: u8 = IPv6FragmentationHeader as u8;
    const UDP: u8 = Udp as u8;
    //all extension headers that use the length field
    const EXTENSION_IDS_WITH_LENGTH: [u8;5] = [
        IPv6HeaderHopByHop as u8,
        IPv6DestinationOptions as u8,
        IPv6RouteHeader as u8,
        IPv6AuthenticationHeader as u8,
        IPv6EncapSecurityPayload as u8
    ];

    //smaller then minimum extension header size (8 bytes)
    {
        let buffer: [u8; 7] = [
            UDP,2,0,0, 0,0,0
        ];
        assert_matches!(Ipv6ExtensionHeaderSlice::from_slice(FRAG, &buffer), 
                        Err(UnexpectedEndOfSlice(8)));
    }
    //smaller then specified size by length field
    {
        let buffer: [u8; 8*3-1] = [
            UDP,2,0,0, 0,0,0,0,
            0,0,0,0,   0,0,0,0,
            0,0,0,0,   0,0,0,
        ];
        //fragmentation header (should not trigger an error, as the length field is not used)
        {
            let slice = Ipv6ExtensionHeaderSlice::from_slice(FRAG, &buffer).unwrap();
            assert_eq!(slice.next_header(), UDP);
            assert_eq!(slice.slice(), &buffer[..8])
        }
        //all others should generate a range error
        for id in EXTENSION_IDS_WITH_LENGTH.iter() {
            let slice = Ipv6ExtensionHeaderSlice::from_slice(*id, &buffer);
            assert_matches!(slice, Err(UnexpectedEndOfSlice(_)));
        }
    }
}