encoding_rs 0.6.9

A Gecko-oriented implementation of the Encoding Standard
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
// Copyright 2016 Mozilla Foundation. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

// It's assumed that in due course Rust will have explicit SIMD but will not
// be good at run-time selection of SIMD vs. no-SIMD. In such a future,
// x86_64 will always use SSE2 and 32-bit x86 will use SSE2 when compiled with
// a Mozilla-shipped rustc. SIMD support and especially detection on ARM is a
// mess. Under the circumstances, it seems to make sense to optimize the ALU
// case for ARMv7 rather than x86. Annoyingly, I was unable to get useful
// numbers of the actual ARMv7 CPU I have access to, because (thermal?)
// throttling kept interfering. Since Raspberry Pi 3 (ARMv8 core but running
// ARMv7 code) produced reproducible performance numbers, that's the ARM
// computer that this code ended up being optimized for in the ALU case.
// Less popular CPU architectures simply get the approach that was chosen based
// on Raspberry Pi 3 measurements. The UTF-16 and UTF-8 ALU cases take
// different approaches based on benchmarking on Raspberry Pi 3.

#[cfg(feature = "simd-accel")]
use simd_funcs::*;

macro_rules! ascii_naive {
    ($name:ident,
     $src_unit:ty,
     $dst_unit:ty) => (
    #[inline(always)]
    pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) -> Option<($src_unit, usize)> {
        // Yes, manually omitting the bound check here matters
        // a lot for perf.
        for i in 0..len {
            let code_unit = *(src.offset(i as isize));
            if code_unit > 127 {
                return Some((code_unit, i));
            }
            *(dst.offset(i as isize)) = code_unit as $dst_unit;
        }
        return None;
    });
}

macro_rules! ascii_alu {
    ($name:ident,
     $src_unit:ty,
     $dst_unit:ty,
     $stride_fn:ident) => (
    #[cfg_attr(feature = "cargo-clippy", allow(never_loop))]
    #[inline(always)]
    pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) -> Option<($src_unit, usize)> {
        let mut offset = 0usize;
        // This loop is only broken out of as a `goto` forward
        loop {
            let mut until_alignment = {
                // Check if the other unit aligns if we move the narrower unit
                // to alignment.
                //               if ::std::mem::size_of::<$src_unit>() == ::std::mem::size_of::<$dst_unit>() {
                // ascii_to_ascii
                let src_alignment = (src as usize) & ALIGNMENT_MASK;
                let dst_alignment = (dst as usize) & ALIGNMENT_MASK;
                if src_alignment != dst_alignment {
                    break;
                }
                (ALIGNMENT - src_alignment) & ALIGNMENT_MASK
                //               } else if ::std::mem::size_of::<$src_unit>() < ::std::mem::size_of::<$dst_unit>() {
                // ascii_to_basic_latin
                //                   let src_until_alignment = (ALIGNMENT - ((src as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK;
                //                   if (dst.offset(src_until_alignment as isize) as usize) & ALIGNMENT_MASK != 0 {
                //                       break;
                //                   }
                //                   src_until_alignment
                //               } else {
                // basic_latin_to_ascii
                //                   let dst_until_alignment = (ALIGNMENT - ((dst as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK;
                //                   if (src.offset(dst_until_alignment as isize) as usize) & ALIGNMENT_MASK != 0 {
                //                       break;
                //                   }
                //                   dst_until_alignment
                //               }
                };
                if until_alignment + STRIDE_SIZE <= len {
                // Moving pointers to alignment seems to be a pessimization on
                // x86_64 for operations that have UTF-16 as the internal
                // Unicode representation. However, since it seems to be a win
                // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except
                // mixed results when encoding from UTF-16 and since x86 and
                // x86_64 should be using SSE2 in due course, keeping the move
                // to alignment here. It would be good to test on more ARM CPUs
                // and on real MIPS and POWER hardware.
                while until_alignment != 0 {
                    let code_unit = *(src.offset(offset as isize));
                    if code_unit > 127 {
                        return Some((code_unit, offset));
                    }
                    *(dst.offset(offset as isize)) = code_unit as $dst_unit;
                    offset += 1;
                    until_alignment -= 1;
                }
                loop {
                    if let Some(num_ascii) = $stride_fn(src.offset(offset as isize) as *const usize,
                                   dst.offset(offset as isize) as *mut usize) {
                        offset += num_ascii;
                        return Some((*(src.offset(offset as isize)), offset));
                    }
                    offset += STRIDE_SIZE;
                    if offset + STRIDE_SIZE > len {
                        break;
                    }
                }
            }
            break;
        }
        while offset < len {
            let code_unit = *(src.offset(offset as isize));
            if code_unit > 127 {
                return Some((code_unit, offset));
            }
            *(dst.offset(offset as isize)) = code_unit as $dst_unit;
            offset += 1;
        }
        None
    });
}

macro_rules! basic_latin_alu {
    ($name:ident,
     $src_unit:ty,
     $dst_unit:ty,
     $stride_fn:ident) => (
    #[cfg_attr(feature = "cargo-clippy", allow(never_loop))]
    #[inline(always)]
    pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) -> Option<($src_unit, usize)> {
        let mut offset = 0usize;
        // This loop is only broken out of as a `goto` forward
        loop {
            let mut until_alignment = {
                // Check if the other unit aligns if we move the narrower unit
                // to alignment.
                //               if ::std::mem::size_of::<$src_unit>() == ::std::mem::size_of::<$dst_unit>() {
                // ascii_to_ascii
                //                   let src_alignment = (src as usize) & ALIGNMENT_MASK;
                //                   let dst_alignment = (dst as usize) & ALIGNMENT_MASK;
                //                   if src_alignment != dst_alignment {
                //                       break;
                //                   }
                //                   (ALIGNMENT - src_alignment) & ALIGNMENT_MASK
                //               } else
                if ::std::mem::size_of::<$src_unit>() < ::std::mem::size_of::<$dst_unit>() {
                    // ascii_to_basic_latin
                    let src_until_alignment = (ALIGNMENT - ((src as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK;
                    if (dst.offset(src_until_alignment as isize) as usize) & ALIGNMENT_MASK != 0 {
                        break;
                    }
                    src_until_alignment
                } else {
                    // basic_latin_to_ascii
                    let dst_until_alignment = (ALIGNMENT - ((dst as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK;
                    if (src.offset(dst_until_alignment as isize) as usize) & ALIGNMENT_MASK != 0 {
                        break;
                    }
                    dst_until_alignment
                }
            };
            if until_alignment + STRIDE_SIZE <= len {
                // Moving pointers to alignment seems to be a pessimization on
                // x86_64 for operations that have UTF-16 as the internal
                // Unicode representation. However, since it seems to be a win
                // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except
                // mixed results when encoding from UTF-16 and since x86 and
                // x86_64 should be using SSE2 in due course, keeping the move
                // to alignment here. It would be good to test on more ARM CPUs
                // and on real MIPS and POWER hardware.
                while until_alignment != 0 {
                    let code_unit = *(src.offset(offset as isize));
                    if code_unit > 127 {
                        return Some((code_unit, offset));
                    }
                    *(dst.offset(offset as isize)) = code_unit as $dst_unit;
                    offset += 1;
                    until_alignment -= 1;
                }
                loop {
                    if !$stride_fn(src.offset(offset as isize) as *const usize,
                                   dst.offset(offset as isize) as *mut usize) {
                        break;
                    }
                    offset += STRIDE_SIZE;
                    if offset + STRIDE_SIZE > len {
                        break;
                    }
                }
            }
            break;
        }
        while offset < len {
            let code_unit = *(src.offset(offset as isize));
            if code_unit > 127 {
                return Some((code_unit, offset));
            }
            *(dst.offset(offset as isize)) = code_unit as $dst_unit;
            offset += 1;
        }
        None
    });
}

macro_rules! ascii_simd {
    ($name:ident,
     $src_unit:ty,
     $dst_unit:ty,
     $stride_both_aligned:ident,
     $stride_src_aligned:ident,
     $stride_dst_aligned:ident,
     $stride_neither_aligned:ident) => (
    #[inline(always)]
    pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) -> Option<($src_unit, usize)> {
        let mut offset = 0usize;
        // XXX should we have more branchy code to move the pointers to
        // alignment if they aren't aligned but could align after
        // processing a few code units?
        if STRIDE_SIZE <= len {
            // XXX Should we first process one stride unconditinoally as unaligned to
            // avoid the cost of the branchiness below if the first stride fails anyway?
            // XXX Should we just use unaligned SSE2 access unconditionally? It seems that
            // on Haswell, it would make sense to just use unaligned and not bother
            // checking. Need to benchmark older architectures before deciding.
            let dst_masked = (dst as usize) & ALIGNMENT_MASK;
            if ((src as usize) & ALIGNMENT_MASK) == 0 {
                if dst_masked == 0 {
                    loop {
                        if !$stride_both_aligned(src.offset(offset as isize),
                                                 dst.offset(offset as isize)) {
                            break;
                        }
                        offset += STRIDE_SIZE;
                        if offset + STRIDE_SIZE > len {
                            break;
                        }
                    }
                } else {
                    loop {
                        if !$stride_src_aligned(src.offset(offset as isize),
                                                dst.offset(offset as isize)) {
                            break;
                        }
                        offset += STRIDE_SIZE;
                        if offset + STRIDE_SIZE > len {
                            break;
                        }
                    }
                }
            } else {
                if dst_masked == 0 {
                    loop {
                        if !$stride_dst_aligned(src.offset(offset as isize),
                                                dst.offset(offset as isize)) {
                            break;
                        }
                        offset += STRIDE_SIZE;
                        if offset + STRIDE_SIZE > len {
                            break;
                        }
                    }
                } else {
                    loop {
                        if !$stride_neither_aligned(src.offset(offset as isize),
                                                    dst.offset(offset as isize)) {
                            break;
                        }
                        offset += STRIDE_SIZE;
                        if offset + STRIDE_SIZE > len {
                            break;
                        }
                    }
                }
            }
        }
        while offset < len {
            let code_unit = *(src.offset(offset as isize));
            if code_unit > 127 {
                return Some((code_unit, offset));
            }
            *(dst.offset(offset as isize)) = code_unit as $dst_unit;
            offset += 1;
        }
        None
    });
}

macro_rules! ascii_to_ascii_simd_stride {
    ($name:ident,
     $load:ident,
     $store:ident) => (
    #[inline(always)]
    pub unsafe fn $name(src: *const u8, dst: *mut u8) -> bool {
        let simd = $load(src);
        if !is_ascii(simd) {
            return false;
        }
        $store(dst, simd);
        true
    });
}

macro_rules! ascii_to_basic_latin_simd_stride {
    ($name:ident,
     $load:ident,
     $store:ident) => (
    #[inline(always)]
    pub unsafe fn $name(src: *const u8, dst: *mut u16) -> bool {
        let simd = $load(src);
        if !is_ascii(simd) {
            return false;
        }
        let (first, second) = unpack(simd);
        $store(dst, first);
        $store(dst.offset(8), second);
        true
    });
}

macro_rules! basic_latin_to_ascii_simd_stride {
    ($name:ident,
     $load:ident,
     $store:ident) => (
    #[inline(always)]
    pub unsafe fn $name(src: *const u16, dst: *mut u8) -> bool {
        let first = $load(src);
        let second = $load(src.offset(8));
        match pack_basic_latin(first, second) {
            Some(packed) => {
                $store(dst, packed);
                true
            },
            None => false,
        }
    });
}

cfg_if! {
    if #[cfg(all(feature = "simd-accel", target_feature = "sse2"))] {
        // SIMD

        pub const STRIDE_SIZE: usize = 16;

        const ALIGNMENT_MASK: usize = 15;

        ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned);
        ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned);
        ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_dst_aligned, load16_unaligned, store16_aligned);
        ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned);

        ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_both_aligned, load16_aligned, store8_aligned);
        ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_src_aligned, load16_aligned, store8_unaligned);
        ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_dst_aligned, load16_unaligned, store8_aligned);
        ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned);

        basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_both_aligned, load8_aligned, store16_aligned);
        basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_src_aligned, load8_aligned, store16_unaligned);
        basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned);
        basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned);

        ascii_simd!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_dst_aligned, ascii_to_ascii_stride_neither_aligned);
        ascii_simd!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_dst_aligned, ascii_to_basic_latin_stride_neither_aligned);
        ascii_simd!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned);
    } else if #[cfg(all(target_endian = "little", target_pointer_width = "64"))] {
        // Aligned ALU word, little-endian, 64-bit

        pub const STRIDE_SIZE: usize = 16;

        const ALIGNMENT: usize = 8;

        const ALIGNMENT_MASK: usize = 7;

        #[inline(always)]
        unsafe fn ascii_to_basic_latin_stride_little_64(src: *const usize, dst: *mut usize) -> bool {
            let word = *src;
            let second_word = *(src.offset(1));
            // Check if the words contains non-ASCII
            if (word & ASCII_MASK) | (second_word & ASCII_MASK) != 0 {
                return false;
            }
            let first = ((0x00000000_FF000000usize & word) << 24) |
                        ((0x00000000_00FF0000usize & word) << 16) |
                        ((0x00000000_0000FF00usize & word) << 8) |
                        (0x00000000_000000FFusize & word);
            let second = ((0xFF000000_00000000usize & word) >> 8) |
                         ((0x00FF0000_00000000usize & word) >> 16) |
                         ((0x0000FF00_00000000usize & word) >> 24) |
                         ((0x000000FF_00000000usize & word) >> 32);
            let third = ((0x00000000_FF000000usize & second_word) << 24) |
                        ((0x00000000_00FF0000usize & second_word) << 16) |
                        ((0x00000000_0000FF00usize & second_word) << 8) |
                        (0x00000000_000000FFusize & second_word);
            let fourth = ((0xFF000000_00000000usize & second_word) >> 8) |
                         ((0x00FF0000_00000000usize & second_word) >> 16) |
                         ((0x0000FF00_00000000usize & second_word) >> 24) |
                         ((0x000000FF_00000000usize & second_word) >> 32);
            *dst = first;
            *(dst.offset(1)) = second;
            *(dst.offset(2)) = third;
            *(dst.offset(3)) = fourth;
            true
        }

        #[inline(always)]
        unsafe fn basic_latin_to_ascii_stride_little_64(src: *const usize, dst: *mut usize) -> bool {
            let first = *src;
            let second = *(src.offset(1));
            let third = *(src.offset(2));
            let fourth = *(src.offset(3));
            if (first & BASIC_LATIN_MASK) | (second & BASIC_LATIN_MASK) | (third & BASIC_LATIN_MASK) | (fourth & BASIC_LATIN_MASK) != 0 {
                return false;
            }
            let word = ((0x00FF0000_00000000usize & second) << 8) |
                       ((0x000000FF_00000000usize & second) << 16) |
                       ((0x00000000_00FF0000usize & second) << 24) |
                       ((0x00000000_000000FFusize & second) << 32) |
                       ((0x00FF0000_00000000usize & first) >> 24) |
                       ((0x000000FF_00000000usize & first) >> 16) |
                       ((0x00000000_00FF0000usize & first) >> 8) |
                       (0x00000000_000000FFusize & first);
            let second_word = ((0x00FF0000_00000000usize & fourth) << 8) |
                              ((0x000000FF_00000000usize & fourth) << 16) |
                              ((0x00000000_00FF0000usize & fourth) << 24) |
                              ((0x00000000_000000FFusize & fourth) << 32) |
                              ((0x00FF0000_00000000usize & third) >> 24) |
                              ((0x000000FF_00000000usize & third) >> 16) |
                              ((0x00000000_00FF0000usize & third) >> 8) |
                              (0x00000000_000000FFusize & third);
            *dst = word;
            *(dst.offset(1)) = second_word;
            true
        }

        basic_latin_alu!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_little_64);
        basic_latin_alu!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_little_64);
    } else if #[cfg(all(target_endian = "little", target_pointer_width = "32"))] {
        // Aligned ALU word, little-endian, 32-bit

        pub const STRIDE_SIZE: usize = 8;

        const ALIGNMENT: usize = 4;

        const ALIGNMENT_MASK: usize = 3;

        #[inline(always)]
        unsafe fn ascii_to_basic_latin_stride_little_32(src: *const usize, dst: *mut usize) -> bool {
            let word = *src;
            let second_word = *(src.offset(1));
            // Check if the words contains non-ASCII
            if (word & ASCII_MASK) | (second_word & ASCII_MASK) != 0 {
                return false;
            }
            let first = ((0x0000FF00usize & word) << 8) |
                        (0x000000FFusize & word);
            let second = ((0xFF000000usize & word) >> 8) |
                         ((0x00FF0000usize & word) >> 16);
            let third = ((0x0000FF00usize & second_word) << 8) |
                        (0x000000FFusize & second_word);
            let fourth = ((0xFF000000usize & second_word) >> 8) |
                         ((0x00FF0000usize & second_word) >> 16);
            *dst = first;
            *(dst.offset(1)) = second;
            *(dst.offset(2)) = third;
            *(dst.offset(3)) = fourth;
            return true;
        }

        #[inline(always)]
        unsafe fn basic_latin_to_ascii_stride_little_32(src: *const usize, dst: *mut usize) -> bool {
            let first = *src;
            let second = *(src.offset(1));
            let third = *(src.offset(2));
            let fourth = *(src.offset(3));
            if (first & BASIC_LATIN_MASK) | (second & BASIC_LATIN_MASK) | (third & BASIC_LATIN_MASK) | (fourth & BASIC_LATIN_MASK) != 0 {
                return false;
            }
            let word = ((0x00FF0000usize & second) << 8) |
                       ((0x000000FFusize & second) << 16) |
                       ((0x00FF0000usize & first) >> 8) |
                       (0x000000FFusize & first);
            let second_word = ((0x00FF0000usize & fourth) << 8) |
                              ((0x000000FFusize & fourth) << 16) |
                              ((0x00FF0000usize & third) >> 8) |
                              (0x000000FFusize & third);
            *dst = word;
            *(dst.offset(1)) = second_word;
            return true;
        }

        basic_latin_alu!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_little_32);
        basic_latin_alu!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_little_32);
    } else if #[cfg(all(target_endian = "big", target_pointer_width = "64"))] {
        // Aligned ALU word, big-endian, 64-bit

        pub const STRIDE_SIZE: usize = 16;

        const ALIGNMENT: usize = 8;

        const ALIGNMENT_MASK: usize = 7;

        #[inline(always)]
        unsafe fn ascii_to_basic_latin_stride_big_64(src: *const usize, dst: *mut usize) -> bool {
            let word = *src;
            let second_word = *(src.offset(1));
            // Check if the words contains non-ASCII
            if (word & ASCII_MASK) | (second_word & ASCII_MASK) != 0 {
                return false;
            }
            let first = ((0xFF000000_00000000usize & word) >> 8) |
                         ((0x00FF0000_00000000usize & word) >> 16) |
                         ((0x0000FF00_00000000usize & word) >> 24) |
                         ((0x000000FF_00000000usize & word) >> 32);
            let second = ((0x00000000_FF000000usize & word) << 24) |
                        ((0x00000000_00FF0000usize & word) << 16) |
                        ((0x00000000_0000FF00usize & word) << 8) |
                        (0x00000000_000000FFusize & word);
            let third = ((0xFF000000_00000000usize & second_word) >> 8) |
                         ((0x00FF0000_00000000usize & second_word) >> 16) |
                         ((0x0000FF00_00000000usize & second_word) >> 24) |
                         ((0x000000FF_00000000usize & second_word) >> 32);
            let fourth = ((0x00000000_FF000000usize & second_word) << 24) |
                        ((0x00000000_00FF0000usize & second_word) << 16) |
                        ((0x00000000_0000FF00usize & second_word) << 8) |
                        (0x00000000_000000FFusize & second_word);
            *dst = first;
            *(dst.offset(1)) = second;
            *(dst.offset(2)) = third;
            *(dst.offset(3)) = fourth;
            return true;
        }

        #[inline(always)]
        unsafe fn basic_latin_to_ascii_stride_big_64(src: *const usize, dst: *mut usize) -> bool {
            let first = *src;
            let second = *(src.offset(1));
            let third = *(src.offset(2));
            let fourth = *(src.offset(3));
            if (first & BASIC_LATIN_MASK) | (second & BASIC_LATIN_MASK) | (third & BASIC_LATIN_MASK) | (fourth & BASIC_LATIN_MASK) != 0 {
                return false;
            }
            let word = ((0x00FF0000_00000000usize & first) << 8) |
                       ((0x000000FF_00000000usize & first) << 16) |
                       ((0x00000000_00FF0000usize & first) << 24) |
                       ((0x00000000_000000FFusize & first) << 32) |
                       ((0x00FF0000_00000000usize & second) >> 24) |
                       ((0x000000FF_00000000usize & second) >> 16) |
                       ((0x00000000_00FF0000usize & second) >> 8) |
                       (0x00000000_000000FFusize & second);
            let second_word = ((0x00FF0000_00000000usize & third) << 8) |
                              ((0x000000FF_00000000usize & third) << 16) |
                              ((0x00000000_00FF0000usize & third) << 24) |
                              ((0x00000000_000000FFusize & third) << 32) |
                              ((0x00FF0000_00000000usize & fourth) >> 24) |
                              ((0x000000FF_00000000usize & fourth) >> 16) |
                              ((0x00000000_00FF0000usize & fourth) >> 8) |
                              (0x00000000_000000FFusize &  fourth);
            *dst = word;
            *(dst.offset(1)) = second_word;
            return true;
        }

        basic_latin_alu!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_big_64);
        basic_latin_alu!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_big_64);
    } else if #[cfg(all(target_endian = "big", target_pointer_width = "32"))] {
        // Aligned ALU word, big-endian, 32-bit

        pub const STRIDE_SIZE: usize = 8;

        const ALIGNMENT: usize = 4;

        const ALIGNMENT_MASK: usize = 3;

        #[inline(always)]
        unsafe fn ascii_to_basic_latin_stride_big_32(src: *const usize, dst: *mut usize) -> bool {
            let word = *src;
            let second_word = *(src.offset(1));
            // Check if the words contains non-ASCII
            if (word & ASCII_MASK) | (second_word & ASCII_MASK) != 0 {
                return false;
            }
            let first = ((0xFF000000usize & word) >> 8) |
                         ((0x00FF0000usize & word) >> 16);
            let second = ((0x0000FF00usize & word) << 8) |
                        (0x000000FFusize & word);
            let third = ((0xFF000000usize & second_word) >> 8) |
                         ((0x00FF0000usize & second_word) >> 16);
            let fourth = ((0x0000FF00usize & second_word) << 8) |
                        (0x000000FFusize & second_word);
            *dst = first;
            *(dst.offset(1)) = second;
            *(dst.offset(2)) = third;
            *(dst.offset(3)) = fourth;
            return true;
        }

        #[inline(always)]
        unsafe fn basic_latin_to_ascii_stride_big_32(src: *const usize, dst: *mut usize) -> bool {
            let first = *src;
            let second = *(src.offset(1));
            let third = *(src.offset(2));
            let fourth = *(src.offset(3));
            if (first & BASIC_LATIN_MASK) | (second & BASIC_LATIN_MASK) | (third & BASIC_LATIN_MASK) | (fourth & BASIC_LATIN_MASK) != 0 {
                return false;
            }
            let word = ((0x00FF0000usize & first) << 8) |
                       ((0x000000FFusize & first) << 16) |
                       ((0x00FF0000usize & second) >> 8) |
                       (0x000000FFusize & second);
            let second_word = ((0x00FF0000usize & third) << 8) |
                              ((0x000000FFusize & third) << 16) |
                              ((0x00FF0000usize & fourth) >> 8) |
                              (0x000000FFusize & fourth);
            *dst = word;
            *(dst.offset(1)) = second_word;
            return true;
        }

        basic_latin_alu!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_big_32);
        basic_latin_alu!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_big_32);
    } else {
        ascii_naive!(ascii_to_ascii, u8, u8);
        ascii_naive!(ascii_to_basic_latin, u8, u16);
        ascii_naive!(basic_latin_to_ascii, u16, u8);
    }
}

cfg_if! {
    if #[cfg(all(feature = "simd-accel", target_feature = "sse2"))] {
    } else if #[cfg(target_endian = "little")] {
        #[inline(always)]
        fn count_zeros(word: usize) -> u32 {
            word.trailing_zeros()
        }
    } else {
        #[inline(always)]
        fn count_zeros(word: usize) -> u32 {
            word.leading_zeros()
        }
    }
}

cfg_if! {
    if #[cfg(all(feature = "simd-accel", target_feature = "sse2"))] {
        #[inline(always)]
        pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> {
            let src = slice.as_ptr();
            let len = slice.len();
            let mut offset = 0usize;
            if STRIDE_SIZE <= len {
                // XXX Should we first process one stride unconditionally as unaligned to
                // avoid the cost of the branchiness below if the first stride fails anyway?
                // XXX Should we just use unaligned SSE2 access unconditionally? It seems that
                // on Haswell, it would make sense to just use unaligned and not bother
                // checking. Need to benchmark older architectures before deciding.
                if ((src as usize) & ALIGNMENT_MASK) == 0 {
                    loop {
                        let simd = unsafe { load16_aligned(src.offset(offset as isize)) };
                        if let Some(consumed) = check_ascii(simd) {
                            offset += consumed;
                            let non_ascii = unsafe { *src.offset(offset as isize) };
                            return Some((non_ascii, offset));
                        }
                        offset += STRIDE_SIZE;
                        if offset + STRIDE_SIZE > len {
                            break;
                        }
                    }
                } else {
                    loop {
                        let simd = unsafe { load16_unaligned(src.offset(offset as isize)) };
                        if let Some(consumed) = check_ascii(simd) {
                            offset += consumed;
                            let non_ascii = unsafe { *src.offset(offset as isize) };
                            return Some((non_ascii, offset));
                        }
                        offset += STRIDE_SIZE;
                        if offset + STRIDE_SIZE > len {
                            break;
                        }
                    }
                }
            }
            while offset < len {
                let code_unit = slice[offset];
                if code_unit > 127 {
                    return Some((code_unit, offset));
                }
                offset += 1;
            }
            None
        }
    } else {
        // `as` truncates, so works on 32-bit, too.
        const ASCII_MASK: usize = 0x80808080_80808080u64 as usize;
        const BASIC_LATIN_MASK: usize = 0xFF80FF80_FF80FF80u64 as usize;

        #[inline(always)]
        unsafe fn ascii_to_ascii_stride(src: *const usize, dst: *mut usize) -> Option<usize> {
            let word = *src;
            let second_word = *(src.offset(1));
            *dst = word;
            *(dst.offset(1)) = second_word;
            find_non_ascii(word, second_word)
        }

        #[inline(always)]
        unsafe fn validate_ascii_stride(src: *const usize) -> Option<usize> {
            let word = *src;
            let second_word = *(src.offset(1));
            find_non_ascii(word, second_word)
        }

        #[inline(always)]
        fn find_non_ascii(word: usize, second_word: usize) -> Option<usize> {
            let word_masked = word & ASCII_MASK;
            let second_masked = second_word & ASCII_MASK;
            if (word_masked | second_masked) == 0 {
                return None;
            }
            if word_masked != 0 {
                let zeros = count_zeros(word_masked);
                // `zeros` now contains 7 (for the seven bits of non-ASCII)
                // plus 8 times the number of ASCII in text order before the
                // non-ASCII byte in the little-endian case or 8 times the number of ASCII in
                // text order before the non-ASCII byte in the big-endian case.
                let num_ascii = (zeros >> 3) as usize;
                return Some(num_ascii);
            }
            let zeros = count_zeros(second_masked);
            // `zeros` now contains 7 (for the seven bits of non-ASCII)
            // plus 8 times the number of ASCII in text order before the
            // non-ASCII byte in the little-endian case or 8 times the number of ASCII in
            // text order before the non-ASCII byte in the big-endian case.
            let num_ascii = (zeros >> 3) as usize;
            Some(ALIGNMENT + num_ascii)
        }

        ascii_alu!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride);

        #[inline(always)]
        pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> {
           let src = slice.as_ptr();
           let len = slice.len();
           let mut offset = 0usize;
           let mut until_alignment = (ALIGNMENT - ((src as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK;
           if until_alignment + STRIDE_SIZE <= len {
               while until_alignment != 0 {
                   let code_unit = slice[offset];
                   if code_unit > 127 {
                       return Some((code_unit, offset));
                   }
                   offset += 1;
                   until_alignment -= 1;
               }
               loop {
                   let ptr = unsafe { src.offset(offset as isize) as *const usize };
                   if let Some(num_ascii) = unsafe { validate_ascii_stride(ptr) } {
                       offset += num_ascii;
                       return Some((unsafe { *(src.offset(offset as isize)) }, offset));
                   }
                   offset += STRIDE_SIZE;
                   if offset + STRIDE_SIZE > len {
                       break;
                   }
               }
           }
           while offset < len {
               let code_unit = slice[offset];
               if code_unit > 127 {
                   return Some((code_unit, offset));
               }
               offset += 1;
           }
           None
        }

    }
}

pub fn ascii_valid_up_to(bytes: &[u8]) -> usize {
    match validate_ascii(bytes) {
        None => bytes.len(),
        Some((_, num_valid)) => num_valid,
    }
}

pub fn iso_2022_jp_ascii_valid_up_to(bytes: &[u8]) -> usize {
    for (i, b_ref) in bytes.iter().enumerate() {
        let b = *b_ref;
        if b >= 0x80 || b == 0x1B || b == 0x0E || b == 0x0F {
            return i;
        }
    }
    bytes.len()
}

// Any copyright to the test code below this comment is dedicated to the
// Public Domain. http://creativecommons.org/publicdomain/zero/1.0/

#[cfg(test)]
mod tests {
    use super::*;

    macro_rules! test_ascii {
        ($test_name:ident,
         $fn_tested:ident,
         $src_unit:ty,
         $dst_unit:ty) => (
        #[test]
        fn $test_name() {
            let mut src: Vec<$src_unit> = Vec::with_capacity(32);
            let mut dst: Vec<$dst_unit> = Vec::with_capacity(32);
            for i in 0..32 {
                src.clear();
                dst.clear();
                dst.resize(32, 0);
                for j in 0..32 {
                    let c = if i == j {
                        0xAA
                    } else {
                        j + 0x40
                    };
                    src.push(c as $src_unit);
                }
                match unsafe { $fn_tested(src.as_ptr(), dst.as_mut_ptr(), 32) } {
                    None => unreachable!("Should always find non-ASCII"),
                    Some((non_ascii, num_ascii)) => {
                        assert_eq!(non_ascii, 0xAA);
                        assert_eq!(num_ascii, i);
                        for j in 0..i {
                            assert_eq!(dst[j], (j + 0x40) as $dst_unit);
                        }
                    }
                }
            }
        });
    }

    test_ascii!(test_ascii_to_ascii, ascii_to_ascii, u8, u8);
    test_ascii!(test_ascii_to_basic_latin, ascii_to_basic_latin, u8, u16);
    test_ascii!(test_basic_latin_to_ascii, basic_latin_to_ascii, u16, u8);
}