# embeddenator-vsa Status
**Version:** 0.21.0
**crates.io:** [embeddenator-vsa](https://crates.io/crates/embeddenator-vsa)
**Last Updated:** 2026-01-26
---
## Overview
Core Vector Symbolic Architecture (VSA) implementation with sparse ternary vector representation.
---
## Features
| `simd` | Yes | SIMD optimizations (AVX2/NEON) |
| `block-sparse` | No | Block-sparse representation |
| `cuda` | No | GPU acceleration via cudarc |
---
## Test Coverage
- **Unit Tests:** 35
- **Benchmarks:** 2 (vsa_ops, simd_cosine)
---
## Key Components
| SparseVec | Production | Sparse ternary vector implementation |
| PackedTritVec | Production | Dense bitsliced representation |
| Codebook | Production | Vector codebook management |
| SIMD Cosine | Production | Optimized similarity computation |
---
## Performance
- Bitsliced: 32 trits per u64 word
- SIMD: 2-4x speedup on supported hardware
- GPU: Optional CUDA acceleration
---
## Remaining Tasks
- [ ] Explicit SIMD intrinsics for ARM NEON
- [ ] GPU kernel optimization
- [ ] Block-sparse production hardening
---
## Links
- **Documentation:** https://docs.rs/embeddenator-vsa
- **Repository:** https://github.com/tzervas/embeddenator-vsa