elusion 3.2.0

Elusion is a modern DataFrame / Data Engineering / Data Analysis library that combines the familiarity of DataFrame operations (like those in PySpark, Pandas, and Polars) with the power of SQL query building. It provides flexible query construction without enforcing strict operation ordering, enabling developers to write intuitive and maintainable data transformations.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
# Elusion 🦀 DataFrame / Data Engineering / Data Analysis Library for Everybody!


![Elusion Logo](images/elusion.png)


Elusion is a high-performance DataFrame / Data Engineering / Data Analysis library designed for in-memory data formats such as CSV, JSON, PARQUET, DELTA, as well as for ODBC Database Connections for MySQL and PostgreSQL, as well as for Azure Blob Storage Connections, as well as for creating JSON files from REST API's which can be forwarded to DataFrame.

All of the DataFrame operations, Reading and Writing can be placed in PipelineScheduler for automated Data Engineering Pipelines.

DataFrame operations are built atop the DataFusion SQL query engine, Database operations are built atop Arrow ODBC, Azure BLOB HTTPS operations are built atop Azure Storage with BLOB and DFS (Data Lake Storage Gen2) endpoints available, Pipeline Scheduling is built atop Tokio Cron Scheduler, REST API is build atop Reqwest. Report Creation is built atop Plotly and AG GRID. (scroll down for examples)

Tailored for Data Engineers and Data Analysts seeking a powerful abstraction over data transformations. Elusion streamlines complex operations like filtering, joining, aggregating, and more with its intuitive, chainable DataFrame API, and provides a robust interface for managing and querying data efficiently. It also has Integrated Plotting and Interactive Dashboard features.

## Core Philosophy

Elusion wants you to be you!

Elusion offers flexibility in constructing queries without enforcing specific patterns or chaining orders, unlike SQL, PySpark, Polars, or Pandas. You can build your queries in any sequence that best fits your logic, writing functions in a manner that makes sense to you. Regardless of the order of function calls, Elusion ensures consistent results.

## Platform Compatibility

Tested for MacOS, Linux and Windows
![Platform comp](images/platformcom.png)

## Security

Codebase has Undergone Rigorous Auditing and Security Testing, ensuring that it is fully prepared for Production.

## Key Features


### 🔄 Job Scheduling (PipelineScheduler)

Flexible Intervals: From 1 minute to 30 days scheduling intervals.
Graceful Shutdown: Built-in Ctrl+C signal handling for clean termination.
Async Support: Built on tokio for non-blocking operations.

### 🌐 External Data Sources Integration

- Azure Blob Storage: Direct integration with Azure Blob Storage for Reading and Writing data files.
- Database Connectors: ODBC support for seamless data access from MySQL and PostgreSQL databases.
- REST API's: Create JSON files from REST API endpoints with Customizable Headers, Params, Date Ranges, Pagination...

### 🚀 High-Performance DataFrame Operations

Seamless Data Loading: Easily load and process data from CSV, PARQUET, JSON, and DELTA table files.
SQL-Like Transformations: Execute transformations such as SELECT, AGG, STRING FUNCTIONS, JOIN, FILTER, HAVING, GROUP BY, ORDER BY, DATETIME and WINDOW with ease.

### 📉 Aggregations and Analytics

Comprehensive Aggregations: Utilize built-in functions like SUM, AVG, MEAN, MEDIAN, MIN, COUNT, MAX, and more.
Advanced Scalar Math: Perform calculations using functions such as ABS, FLOOR, CEIL, SQRT, ISNAN, ISZERO, PI, POWER, and others.

### 🔗 Flexible Joins

Diverse Join Types: Perform joins using INNER, LEFT, RIGHT, FULL, and other join types.
Intuitive Syntax: Easily specify join conditions and aliases for clarity and simplicity.

### 🪟 Window Functions

Analytical Capabilities: Implement window functions like RANK, DENSE_RANK, ROW_NUMBER, and custom partition-based calculations to perform advanced analytics.

### 🔄 Pivot and Unpivot Functions

Data Reshaping: Transform your data structure using PIVOT and UNPIVOT functions to suit your analytical needs.

### 📊 Create REPORTS

Create HTML files with Interactive Dashboards with multiple interactive Plots and Tables.
Plots Available: TimeSeries, Bar, Pie, Donut, Histogram, Scatter, Box...
Tables can Paginate pages, Filter, Resize, Reorder columns...
Export Tables data to EXCEL and CSV

### 🧹 Clean Query Construction

Readable Queries: Construct SQL queries that are both readable and reusable.
Advanced Query Support: Utilize Common Table Expressions (CTEs), subqueries, and set operations such as APPEND, UNION, UNION ALL, INTERSECT, and EXCEPT. For multiple Dataframea operations: APPEND_MANY, UNION_MANY, UNION_ALL_MANY.

### 🛠️ Easy-to-Use API

Chainable Interface: Build queries using a chainable and intuitive API for streamlined development.
Debugging Support: Access readable debug outputs of the generated SQL for easy verification and troubleshooting.
**Data Preview**: Quickly preview your data by displaying a subset of rows in the terminal.
**Composable Queries**: Seamlessly chain transformations to create reusable and testable workflows.

---
## Installation


To add **Elusion** to your Rust project, include the following lines in your `Cargo.toml` under `[dependencies]`:

```toml
elusion = "3.2.0"
tokio = { version = "1.42.0", features = ["rt-multi-thread"] }
```
## Rust version needed

```toml
>= 1.81
```
---
## ODBC Support
Elusion now provides ODBC functionality behind an optional feature flag to keep the core library lightweight and provide flexibility for users.
### Enabling ODBC Support

To use ODBC-related features, you need to:

1. Add the ODBC feature when specifying the dependency:
```toml
[dependencies]
elusion = { version = "3.2.0", features = ["odbc"] }
```
2. Make sure to install ODBC Driver(unixodbc) on Ubuntu and macOS
Ubuntu/Debian: 
```toml
sudo apt-get install unixodbc-dev
```
macOS: 
```toml
brew install unixodbc
```
#### When building your project, use the ODBC feature:

```rust
cargo build --features odbc
```
```rust
cargo run --features odbc  
```
---
## NORMALIZATION

#### DataFrame (your files) Column Names will be normalized to LOWERCASE(), TRIM() and REPLACE(" ","_")
#### All DataFrame query expresions, functions, aliases and column names will be normalized to LOWERCASE(), TRIM() and REPLACE(" ","_")

---
## Schema 

#### SCHEMA IS DYNAMICALLY INFERED

---
# Usage examples:


### MAIN function 


```rust
// Import everything needed
use elusion::prelude::*; 

#[tokio::main]

async fn main() -> ElusionResult<()> {

    Ok(())
}

```
---
## LOADING

### - Loading data into CustomDataFrame can be from:

#### - In-Memory data formats: CSV, JSON, PARQUET, DELTA 

#### - Azure Blob Storage endpoints (BLOB, DFS)

#### - ODBC Connectors (databases)


#### -> NEXT is example for reading data from local files, 

#### down bellow are examples for Azure Blob Storage, ODBC

---
### LOADING data from Files into CustomDataFrame (in-memory data formats)

#### - File extensions are automatically recognized 

#### - All you have to do is to provide path to your file

```rust
let csv_data = "C:\\Borivoj\\RUST\\Elusion\\sales_data.csv";
let parquet_path = "C:\\Borivoj\\RUST\\Elusion\\prod_data.parquet";
let json_path = "C:\\Borivoj\\RUST\\Elusion\\db_data.json";
let delta_path = "C:\\Borivoj\\RUST\\Elusion\\agg_sales"; // for DELTA you just specify folder name without extension
```
### Creating CustomDataFrame

#### 2 arguments needed:  **Path**, **Table Alias**


```rust
let df_sales = CustomDataFrame::new(csv_data, "sales").await?; 
let df_customers = CustomDataFrame::new(parquet_path, "customers").await?;
```
### LOADING data from Databases into CustomDataFrame (scroll down for full example)

```rust
let pg_df = CustomDataFrame::from_db(pg_connection, sql_query).await?;
```
### LOADING data from Azure BLOB Storage into CustomDataFrame (scroll down for full example)

```rust
let df = CustomDataFrame::from_azure_with_sas_token(
        blob_url, 
        sas_token, 
        Some("folder-name/file-name"), // FILTERING is optional. Can be None if you want to take everything from Container
        "data" // alias for registering table
    ).await?;
```
---
## SELECT

### ALIAS column names in SELECT() function (AS is case insensitive)

```rust
let df_AS = select_df
    .select(["CustomerKey AS customerkey_alias", "FirstName as first_name", "LastName", "EmailAddress"]);

let df_select_all = select_df.select(["*"]);

let df_count_all = select_df.select(["COUNT(*)"]);
```
---
## Where to use which Functions:

### Scalar and Operators -> in SELECT() function

### Aggregation Functions -> in AGG() function

### String Column Functions -> in STRING_FUNCTIONS() function

### DateTime Functions -> in DATETIME_FUNCTIONS() function

---
### Numerical Operators (supported +, -, * , / , %)

```rust
let num_ops_sales = sales_order_df
    .select([
        "customer_name",
        "order_date",
        "billable_value",
        "billable_value * 2 AS double_billable_value",  // Multiplication
        "billable_value / 100 AS percentage_billable"  // Division
    ])
    .filter("billable_value > 100.0")
    .order_by(["order_date"], [true])
    .limit(10);

let num_ops_res = num_ops_sales.elusion("scalar_df").await?;
num_ops_res.display().await?;
```
### FILTER  (used before aggregations)

```rust
let filter_df = sales_order_df
    .select(["customer_name", "order_date", "billable_value"])
    .filter_many([("order_date > '2021-07-04'"), ("billable_value > 100.0")])
    .order_by(["order_date"], [true])
    .limit(10);

let filtered = filter_df.elusion("result_sales").await?;
filtered.display().await?;

// exmple 2
const FILTER_CUSTOMER: &str = "customer_name == 'Customer IRRVL'";

let filter_query = sales_order_df
    .select([
        "customer_name",
        "order_date",
        "ABS(billable_value) AS abs_billable_value",
        "ROUND(SQRT(billable_value), 2) AS SQRT_billable_value",
        "billable_value * 2 AS double_billable_value",  // Multiplication
        "billable_value / 100 AS percentage_billable"  // Division
    ])
    .agg([
        "ROUND(AVG(ABS(billable_value)), 2) AS avg_abs_billable",
        "SUM(billable_value) AS total_billable",
        "MAX(ABS(billable_value)) AS max_abs_billable",
        "SUM(billable_value) * 2 AS double_total_billable",      // Operator-based aggregation
        "SUM(billable_value) / 100 AS percentage_total_billable" // Operator-based aggregation
    ])
    .filter(FILTER_CUSTOMER)
    .group_by_all()
    .order_by_many([
        ("total_billable", false),  // Order by total_billable descending
        ("max_abs_billable", true), // Then by max_abs_billable ascending
    ])
```
### HAVING (used after aggregations)

```rust
//Example 1 with aggregatied column names
 let example1 = sales_df
    .join_many([
        (customers_df, ["s.CustomerKey = c.CustomerKey"], "INNER"),
        (products_df, ["s.ProductKey = p.ProductKey"], "INNER"),
    ])
    .select(["c.CustomerKey", "c.FirstName", "c.LastName", "p.ProductName"])
    .agg([
        "SUM(s.OrderQuantity) AS total_quantity",
        "AVG(s.OrderQuantity) AS avg_quantity"
    ])
    .group_by(["c.CustomerKey", "c.FirstName", "c.LastName", "p.ProductName"])
    .having_many([
        ("total_quantity > 10"),
        ("avg_quantity < 100")
    ])
    .order_by_many([
        ("total_quantity", true ),
        ("p.ProductName", false)
    ]);

let result = example1.elusion("sales_res").await?;
result.display().await?;

//Example 2 with aggregation in having
let df_having= sales_df
    .join(customers_df, ["s.CustomerKey = c.CustomerKey"], 
        "INNER"
    )
    .select(["c.CustomerKey", "c.FirstName", "c.LastName"])
    .agg([
        "SUM(s.OrderQuantity) AS total_quantity",
        "AVG(s.OrderQuantity) AS avg_quantity"
    ])
    .group_by(["c.CustomerKey", "c.FirstName", "c.LastName"])
    .having_many([
        ("SUM(s.OrderQuantity) > 10"),
        ("AVG(s.OrderQuantity) < 100")
    ])
    .order_by(["total_quantity"], [true])
    .limit(5);

let result = df_having.elusion("sales_res").await?;
result.display().await?;
```
### SCALAR functions

```rust
let scalar_df = sales_order_df
    .select([
        "customer_name", 
        "order_date", 
        "ABS(billable_value) AS abs_billable_value",
        "ROUND(SQRT(billable_value), 2) AS SQRT_billable_value"])
    .filter("billable_value > 100.0")
    .order_by(["order_date"], [true])
    .limit(10);

let scalar_res = scalar_df.elusion("scalar_df").await?;
scalar_res.display().await?;
```
### AGGREGATE functions with nested Scalar functions 

```rust
let scalar_df = sales_order_df
    .select([
        "customer_name", 
        "order_date"
    ])
    .agg([
        "ROUND(AVG(ABS(billable_value)), 2) AS avg_abs_billable",
        "SUM(billable_value) AS total_billable",
        "MAX(ABS(billable_value)) AS max_abs_billable",
        "SUM(billable_value) * 2 AS double_total_billable",      // Operator-based aggregation
        "SUM(billable_value) / 100 AS percentage_total_billable" // Operator-based aggregation
    ])
    .group_by(["customer_name", "order_date"])
    .filter("billable_value > 100.0")
    .order_by(["order_date"], [true])
    .limit(10);

let scalar_res = scalar_df.elusion("scalar_df").await?;
scalar_res.display().await?;
```
### STRING functions

```rust
let df = sales_df
    .select(["FirstName", "LastName"])
    .string_functions([
        "'New' AS new_old_customer",
        "TRIM(c.EmailAddress) AS trimmed_email",
        "CONCAT(TRIM(c.FirstName), ' ', TRIM(c.LastName)) AS full_name",
    ]);

let result_df = df.elusion("df").await?;
result_df.display().await?;
```
### Numerical Operators, Scalar Functions, Aggregated Functions...

```rust
let mix_query = sales_order_df
    .select([
        "customer_name",
        "order_date",
        "ABS(billable_value) AS abs_billable_value",
        "ROUND(SQRT(billable_value), 2) AS SQRT_billable_value",
        "billable_value * 2 AS double_billable_value",  // Multiplication
        "billable_value / 100 AS percentage_billable"  // Division
    ])
    .agg([
        "ROUND(AVG(ABS(billable_value)), 2) AS avg_abs_billable",
        "SUM(billable_value) AS total_billable",
        "MAX(ABS(billable_value)) AS max_abs_billable",
        "SUM(billable_value) * 2 AS double_total_billable",      // Operator-based aggregation
        "SUM(billable_value) / 100 AS percentage_total_billable" // Operator-based aggregation
    ])
    .filter("billable_value > 50.0")
    .group_by_all()
    .order_by_many([
        ("total_billable", false),  // Order by total_billable descending
        ("max_abs_billable", true), // Then by max_abs_billable ascending
    ]);

let mix_res = mix_query.elusion("scalar_df").await?;
mix_res.display().await?;
```
---
### Supported Aggregation functions

```rust
SUM, AVG, MEAN, MEDIAN, MIN, COUNT, MAX,  
LAST_VALUE, FIRST_VALUE,  
GROUPING, STRING_AGG, ARRAY_AGG, VAR, VAR_POP,  
VAR_POPULATION, VAR_SAMP, VAR_SAMPLE,  
BIT_AND, BIT_OR, BIT_XOR, BOOL_AND, BOOL_OR 
```
### Supported Scalar Math Functions

```rust
ABS, FLOOR, CEIL, SQRT, ISNAN, ISZERO,  
PI, POW, POWER, RADIANS, RANDOM, ROUND,  
FACTORIAL, ACOS, ACOSH, ASIN, ASINH,  
COS, COSH, COT, DEGREES, EXP,  
SIN, SINH, TAN, TANH, TRUNC, CBRT,  
ATAN, ATAN2, ATANH, GCD, LCM, LN,  
LOG, LOG10, LOG2, NANVL, SIGNUM
```
---
## JOIN

#### JOIN examples with single condition and 2 dataframes, AGGREGATION, GROUP BY

```rust
let single_join = df_sales
    .join(df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER")
    .select(["s.OrderDate","c.FirstName", "c.LastName"])
    .agg([
        "SUM(s.OrderQuantity) AS total_quantity",
        "AVG(s.OrderQuantity) AS avg_quantity",
    ])
    .group_by(["s.OrderDate","c.FirstName","c.LastName"])
    .having("total_quantity > 10") 
    .order_by(["total_quantity"], [false]) // true is ascending, false is descending
    .limit(10);

let join_df1 = single_join.elusion("result_query").await?;
join_df1.display().await?;
```
### JOIN with single conditions and 3 dataframes, AGGREGATION, GROUP BY, HAVING, SELECT, ORDER BY

```rust
let many_joins = df_sales
    .join_many([
        (df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER"),
        (df_products, ["s.ProductKey = p.ProductKey"], "INNER"),
    ]) 
    .select([
        "c.CustomerKey","c.FirstName","c.LastName","p.ProductName",
    ]) 
    .agg([
        "SUM(s.OrderQuantity) AS total_quantity",
        "AVG(s.OrderQuantity) AS avg_quantity",
    ]) 
    .group_by(["c.CustomerKey", "c.FirstName", "c.LastName", "p.ProductName"]) 
    .having_many([("total_quantity > 10"), ("avg_quantity < 100")]) 
    .order_by_many([
        ("total_quantity", true), // true is ascending 
        ("p.ProductName", false)  // false is descending
    ])
    .limit(10); 

let join_df3 = many_joins.elusion("df_joins").await?;
join_df3.display().await?;
```
### JOIN with multiple conditions and 2 data frames

```rust
let result_join = orders_df
    .join(
        customers_df,
        ["o.CustomerID = c.CustomerID" , "o.RegionID = c.RegionID"],
        "INNER"
    )
    .select([
        "o.OrderID",
        "c.Name",
        "o.OrderDate"
    ])
    .string_functions([
        "CONCAT(TRIM(c.Name), ' (', c.Email, ')') AS customer_info",
        "UPPER(c.Status) AS customer_status",
        "LEFT(c.Email, POSITION('@' IN c.Email) - 1) AS username"
    ])
    .agg([
        "SUM(o.Amount) AS total_amount",
        "AVG(o.Quantity) AS avg_quantity",
        "COUNT(DISTINCT o.OrderID) AS order_count",
        "MAX(o.Amount) AS max_amount",
        "MIN(o.Amount) AS min_amount"
    ])
    .group_by([
        "o.OrderID",
        "c.Name",
        "o.OrderDate",
        "c.Email",   
        "c.Status"
    ]);

let res_joins = result_join.elusion("one_join").await?;
res_joins.display().await?;
```
### JOIN_MANY with multiple conditions and 3 data frames

```rust
let result_join_many = order_join_df
    .join_many([
        (customer_join_df,
            ["o.CustomerID = c.CustomerID" , "o.RegionID = c.RegionID"],
            "INNER"
        ),
        (regions_join_df,
            ["c.RegionID = r.RegionID" , "r.IsActive = true"],
            "INNER"
        )
    ])
    .select(["o.OrderID","c.Name","r.RegionName", "r.CountryID"])
    .string_functions([
    "CONCAT(r.RegionName, ' (', r.CountryID, ')') AS region_info",
 
    "CASE c.CreditLimit 
        WHEN 1000 THEN 'Basic'
        WHEN 2000 THEN 'Premium'
        ELSE 'Standard'
    END AS credit_tier",

    "CASE 
        WHEN c.CreditLimit > 2000 THEN 'High'
        WHEN c.CreditLimit > 1000 THEN 'Medium'
        ELSE 'Low'
    END AS credit_status",

    "CASE
        WHEN o.Amount > 1000 AND c.Status = 'active' THEN 'Priority'
        WHEN o.Amount > 500 THEN 'Regular'
        ELSE 'Standard'
    END AS order_priority",

    "CASE r.RegionName
        WHEN 'East Coast' THEN 'Eastern'
        WHEN 'West Coast' THEN 'Western'
        ELSE 'Other'
    END AS region_category",

    "CASE
        WHEN EXTRACT(DOW FROM o.OrderDate) IN (0, 6) THEN 'Weekend'
        ELSE 'Weekday'
    END AS order_day_type"
    ])
    .agg([
        "SUM(o.Amount) AS total_amount",                                  
        "COUNT(*) AS row_count",                                       
        "SUM(o.Amount * (1 - o.Discount/100)) AS net_amount",          
        "ROUND(SUM(o.Amount) / COUNT(*), 2) AS avg_order_value",       
        "SUM(o.Amount * r.TaxRate) AS total_tax"                      
    ])
    .group_by_all()
    .having("total_amount > 200")
    .order_by(["total_amount"], [false]); 

let res_joins_many = result_join_many.elusion("many_join").await?;
res_joins_many.display().await?;
```
### JOIN_MANY with single condition and 3 dataframes, STRING FUNCTIONS, AGGREGATION, GROUP BY, HAVING_MANY, ORDER BY

```rust

let str_func_joins = df_sales
    .join_many([
        (df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER"),
        (df_products, ["s.ProductKey = p.ProductKey"], "INNER"),
    ]) 
    .select([
        "c.CustomerKey",
        "c.FirstName",
        "c.LastName",
        "c.EmailAddress",
        "p.ProductName",
    ])
    .string_functions([
        "TRIM(c.EmailAddress) AS trimmed_email_address",
        "CONCAT(TRIM(c.FirstName), ' ', TRIM(c.LastName)) AS full_name",
        "LEFT(p.ProductName, 15) AS short_product_name",
        "RIGHT(p.ProductName, 5) AS end_product_name",
    ])
    .agg([
        "COUNT(p.ProductKey) AS product_count",
        "SUM(s.OrderQuantity) AS total_order_quantity",
    ])
    .group_by_all()
    .having_many([("total_order_quantity > 10"),  ("product_count >= 1")])  
    .order_by_many([
        ("total_order_quantity", true), 
        ("p.ProductName", false) 
    ]); 

let join_str_df3 = str_func_joins.elusion("df_joins").await?;
join_str_df3.display().await?;
```
#### Currently implemented join types

```rust
"INNER", "LEFT", "RIGHT", "FULL", 
"LEFT SEMI", "RIGHT SEMI", 
"LEFT ANTI", "RIGHT ANTI", "LEFT MARK" 
```
---
### STRING FUNCTIONS

```rust
let string_functions_df = df_sales
    .join_many([
        (df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER"),
        (df_products, ["s.ProductKey = p.ProductKey"], "INNER"),
    ]) 
    .select([
        "c.CustomerKey",
        "c.FirstName",
        "c.LastName",
        "c.EmailAddress",
        "p.ProductName"
    ])
    .string_functions([
    // Basic String Functions
    "TRIM(c.EmailAddress) AS trimmed_email",
    "LTRIM(c.EmailAddress) AS left_trimmed_email",
    "RTRIM(c.EmailAddress) AS right_trimmed_email",
    "UPPER(c.FirstName) AS upper_first_name",
    "LOWER(c.LastName) AS lower_last_name",
    "LENGTH(c.EmailAddress) AS email_length",
    "LEFT(p.ProductName, 10) AS product_start",
    "RIGHT(p.ProductName, 10) AS product_end",
    "SUBSTRING(p.ProductName, 1, 5) AS product_substr",
    // Concatenation
    "CONCAT(c.FirstName, ' ', c.LastName) AS full_name",
    "CONCAT_WS(' ', c.FirstName, c.LastName, c.EmailAddress) AS all_info",
    // Position and Search
    "POSITION('@' IN c.EmailAddress) AS at_symbol_pos",
    "STRPOS(c.EmailAddress, '@') AS email_at_pos",
    // Replacement and Modification
    "REPLACE(c.EmailAddress, '@adventure-works.com', '@newdomain.com') AS new_email",
    "TRANSLATE(c.FirstName, 'AEIOU', '12345') AS vowels_replaced",
    "REPEAT('*', 5) AS stars",
    "REVERSE(c.FirstName) AS reversed_name",
    // Padding
    "LPAD(c.CustomerKey::TEXT, 10, '0') AS padded_customer_id",
    "RPAD(c.FirstName, 20, '.') AS padded_name",
    // Case Formatting
    "INITCAP(LOWER(c.FirstName)) AS proper_case_name",
    // String Extraction
    "SPLIT_PART(c.EmailAddress, '@', 1) AS email_username",
    // Type Conversion
    "TO_CHAR(s.OrderDate, 'YYYY-MM-DD') AS formatted_date"
    ])
    .agg([
        "COUNT(*) AS total_records",
        "STRING_AGG(p.ProductName, ', ') AS all_products"
    ])
    .filter("c.EmailAddress IS NOT NULL")
    .group_by_all()
    .having("COUNT(*) > 1")
    .order_by(["c.CustomerKey"], [true]);   

let str_df = string_functions_df.elusion("df_joins").await?;
str_df.display().await?;    
```
#### Currently Available String functions

```rust
1.Basic String Functions:
TRIM() - Remove leading/trailing spaces
LTRIM() - Remove leading spaces
RTRIM() - Remove trailing spaces
UPPER() - Convert to uppercase
LOWER() - Convert to lowercase
LENGTH() or LEN() - Get string length
LEFT() - Extract leftmost characters
RIGHT() - Extract rightmost characters
SUBSTRING() - Extract part of string
2. String concatenation:
CONCAT() - Concatenate strings
CONCAT_WS() - Concatenate with separator
3. String Position and Search:
POSITION() - Find position of substring
STRPOS() - Find position of substring
INSTR() - Find position of substring
LOCATE() - Find position of substring
4. String Replacement and Modification:
REPLACE() - Replace all occurrences of substring
TRANSLATE() - Replace characters
OVERLAY() - Replace portion of string
REPEAT() - Repeat string
REVERSE() - Reverse string characters
5. String Pattern Matching:
LIKE() - Pattern matching with wildcards
REGEXP() or RLIKE() - Pattern matching with regular expressions
6. String Padding:
LPAD() - Pad string on left
RPAD() - Pad string on right
SPACE() - Generate spaces
7. String Case Formatting:
INITCAP() - Capitalize first letter of each word
8. String Extraction:
SPLIT_PART() - Split string and get nth part
SUBSTR() - Get substring
9. String Type Conversion:
TO_CHAR() - Convert to string
CAST() - Type conversion
CONVERT() - Type conversion
10. Control Flow:
CASE()
```
---
### DATETIME FUNCTIONS
#### Work best with YYYY-MM-DD format
```rust
let dt_query = sales_order_df
    .select([
        "customer_name",
        "order_date",
        "delivery_date"
    ])
    .datetime_functions([
    // Current date/time comparisons
    "CURRENT_DATE() AS today",
    "CURRENT_TIME() AS current_time",
    "CURRENT_TIMESTAMP() AS now",
    "NOW() AS now_timestamp",
    "TODAY() AS today_timestamp",
    
    // Date binning (for time-series analysis)
    "DATE_BIN('1 week', order_date, MAKE_DATE(2020, 1, 1)) AS weekly_bin",
    "DATE_BIN('1 month', order_date, MAKE_DATE(2020, 1, 1)) AS monthly_bin",
    
    // Date formatting
    "DATE_FORMAT(order_date, '%Y-%m-%d') AS formatted_date",
    "DATE_FORMAT(order_date, '%Y/%m/%d') AS formatted_date_alt",
    
    // Basic date components
    "DATE_PART('year', order_date) AS year",
    "DATE_PART('month', order_date) AS month",
    "DATE_PART('day', order_date) AS day",

    // Quarters and weeks
    "DATE_PART('quarter', order_date) AS order_quarter",
    "DATE_PART('week', order_date) AS order_week",

    // Day of week/year
    "DATE_PART('dow', order_date) AS day_of_week",
    "DATE_PART('doy', order_date) AS day_of_year",

    // Analysis
    "DATE_PART('day', delivery_date - order_date) AS delivery_days",
    "DATE_PART('day', CURRENT_DATE() - order_date) AS days_since_order",
    
    // Date truncation (alternative syntax)
    "DATE_TRUNC('week', order_date) AS week_start",
    "DATE_TRUNC('quarter', order_date) AS quarter_start",
    "DATE_TRUNC('month', order_date) AS month_start",
    "DATE_TRUNC('year', order_date) AS year_start",
    
    // Complex date calculations
    "CASE 
        WHEN DATE_PART('month', order_date) <= 3 THEN 'Q1'
        WHEN DATE_PART('month', order_date) <= 6 THEN 'Q2'
        WHEN DATE_PART('month', order_date) <= 9 THEN 'Q3'
        ELSE 'Q4'
        END AS fiscal_quarter",
    ])
    .order_by(["order_date"], [false])

let dt_res = dt_query.elusion("datetime_df").await?;
dt_res.display().await?;
```
#### Currently Available DateTime Functions
```rust
CURRENT_DATE()
CURRENT_TIME(),
CURRENT_TIMESTAMP()
NOW(),
TODAY(),
DATE_PART()
DATE_TRUNC()
DATE_BIN()
MAKE_DATE()
DATE_FORMAT()
```
---
### WINDOW functions
#### Aggregate, Ranking and Analytical functions
```rust
let window_query = df_sales
    .join(df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER")
    .select(["s.OrderDate","c.FirstName","c.LastName","s.OrderQuantity"])
    //aggregated window functions
    .window("SUM(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) as running_total")
    .window("AVG(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS running_avg")
    .window("MIN(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS running_min")
    .window("MAX(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS running_max")
    .window("COUNT(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS running_count")
    //ranking window functions
    .window("ROW_NUMBER() OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) as row_num")
    .window("DENSE_RANK() OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS dense_rnk")
    .window("PERCENT_RANK() OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS pct_rank")
    .window("CUME_DIST() OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS cume_dist")
    .window("NTILE(4) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS quartile")
    // analytical window functions
    .window("FIRST_VALUE(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS first_qty")
    .window("LAST_VALUE(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS last_qty")
    .window("LAG(s.OrderQuantity, 1, 0) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS prev_qty")
    .window("LEAD(s.OrderQuantity, 1, 0) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS next_qty")
    .window("NTH_VALUE(s.OrderQuantity, 3) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS third_qty");

let window_df = window_query.elusion("result_window").await?;
window_df.display().await?;
```
#### Rolling Window Functions
```rust
let rollin_query = df_sales
    .join(df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER")
    .select(["s.OrderDate", "c.FirstName", "c.LastName", "s.OrderQuantity"])
        //aggregated rolling windows
    .window("SUM(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate
             ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS running_total")
    .window("AVG(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate
             ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS full_partition_avg");

let rollin_df = rollin_query.elusion("rollin_result").await?;
rollin_df.display().await?;
```
---
## APPEND, APPEND_MANY
#### APPEND: Combines rows from two dataframes, keeping all rows
#### APPEND_MANY: Combines rows from many dataframes, keeping all rows
```rust
let df1 = "C:\\Borivoj\\RUST\\Elusion\\API\\df1.json";
let df2 = "C:\\Borivoj\\RUST\\Elusion\\API\\df2.json";
let df3 = "C:\\Borivoj\\RUST\\Elusion\\API\\df3.json";
let df4 = "C:\\Borivoj\\RUST\\Elusion\\API\\df4.json";
let df5 = "C:\\Borivoj\\RUST\\Elusion\\API\\df5.json";

let df1 = CustomDataFrame::new(df1, "msales1").await?; 
let df2 = CustomDataFrame::new(df2, "msales2").await?; 
let df3 = CustomDataFrame::new(df3, "msales3").await?; 
let df4 = CustomDataFrame::new(df4, "msales4").await?; 
let df5 = CustomDataFrame::new(df5, "msales5").await?; 

let res_df1 = df1.select(["Month", "TotalSales"]).string_functions(["'site1' AS Restaurant"]);
let result_df1 = res_df1.elusion("el1").await?;

let res_df2 = df2.select(["Month", "TotalSales"]).string_functions(["'site2' AS Restaurant"]);
let result_df2 = res_df2.elusion("el2").await?;

let res_df3 = df3.select(["Month", "TotalSales"]).string_functions(["'site3' AS Restaurant"]);
let result_df3 = res_df3.elusion("el3").await?;

let res_df4 = df4.select(["Month", "TotalSales"]).string_functions(["'site4' AS Restaurant"]);
let result_df4 = res_df4.elusion("el4").await?;

let res_df5 = df5.select(["Month", "TotalSales"]).string_functions(["'site5' AS Restaurant"]);
let resuld_df5 = res_df5.elusion("el5").await?;

//APPEND
let append_df = result_df1.append(result_df2).await?;
//APPEND_MANY
let append_many_df = result_df1.append_many([result_df2, result_df3, result_df4, resuld_df5]).await?;
```
---
## UNION, UNION ALL, EXCEPT, INTERSECT
#### UNION: Combines rows from both, removing duplicates
#### UNION ALL: Combines rows from both, keeping duplicates
#### EXCEPT: Difference of two sets (only rows in left minus those in right).
#### INTERSECT: Intersection of two sets (only rows in both).
```rust
//UNION
let df1 = sales_df.clone()
.join(
    customers_df.clone(), ["s.CustomerKey = c.CustomerKey"], "INNER",
)
.select(["c.FirstName", "c.LastName"])
.string_functions([
    "TRIM(c.EmailAddress) AS trimmed_email",
    "CONCAT(TRIM(c.FirstName), ' ', TRIM(c.LastName)) AS full_name",
]);

let df2 = sales_df.clone()
.join(
    customers_df.clone(), ["s.CustomerKey = c.CustomerKey"], "INNER",
)
.select(["c.FirstName", "c.LastName"])
.string_functions([
    "TRIM(c.EmailAddress) AS trimmed_email",
    "CONCAT(TRIM(c.FirstName), ' ', TRIM(c.LastName)) AS full_name",
]);

let result_df1 = df1.elusion("df1").await?;
let result_df2 = df2.elusion("df2").await?;

let union_df = result_df1.union(result_df2).await?;

let union_df_final = union_df.limit(100).elusion("union_df").await?;
union_df_final.display().await?;

//UNION ALL
let union_all_df = result_df1.union_all(result_df2).await?;
//EXCEPT
let except_df = result_df1.except(result_df2).await?;
//INTERSECT
let intersect_df = result_df1.intersect(result_df2).await?;

```
## UNION_MANY, UNION_ALL_MANY
#### UNION_MANY: Combines rows from many dataframes, removing duplicates
#### UNION_ALL_MANY: Combines rows from many dataframes, keeping duplicates
```rust
let df1 = "C:\\Borivoj\\RUST\\Elusion\\API\\df1.json";
let df2 = "C:\\Borivoj\\RUST\\Elusion\\API\\df2.json";
let df3 = "C:\\Borivoj\\RUST\\Elusion\\API\\df3.json";
let df4 = "C:\\Borivoj\\RUST\\Elusion\\API\\df4.json";
let df5 = "C:\\Borivoj\\RUST\\Elusion\\API\\df5.json";

let df1 = CustomDataFrame::new(df1, "msales").await?; 
let df2 = CustomDataFrame::new(df2, "msales").await?; 
let df3 = CustomDataFrame::new(df3, "msales").await?; 
let df4 = CustomDataFrame::new(df4, "msales").await?; 
let df5 = CustomDataFrame::new(df5, "msales").await?; 

let res_df1 = df1.select(["Month", "TotalSales"]).string_functions(["'df1' AS Sitename"]);
let result_df1 = res_df1.elusion("el1").await?;

let res_df2 = df2.select(["Month", "TotalSales"]).string_functions(["'df2' AS Sitename"]);
let result_df2 = res_df2.elusion("el2").await?;

let res_df3 = df3.select(["Month", "TotalSales"]).string_functions(["'df3' AS Sitename"]);
let result_df3 = res_df3.elusion("el3").await?;

let res_df4 = df4.select(["Month", "TotalSales"]).string_functions(["'df4' AS Sitename"]);
let result_df4 = res_df4.elusion("el4").await?;

let res_df5 = df5.select(["Month", "TotalSales"]).string_functions(["'df5' AS Sitename"]);
let resuld_df5 = res_df5.elusion("el5").await?;

//UNION_MANY
let union_all_df = result_df1.union_many([result_df2, result_df3, result_df4, resuld_df5]).await?;
//UNION_ALL_MANY
let union_all_many_df = result_df1.union_all_many([result_df2, result_df3, result_df4, resuld_df5]).await?;
```
---
## PIVOT and UNPIVOT
#### Pivot and Unpivot functions are ASYNC function
#### They should be used separately from other functions: 1. directly on initial CustomDataFrame, 2. after .elusion() evaluation.
#### Future needs to be in final state so .await? must be used
```rust
// PIVOT
// directly on initial CustomDataFrame
let sales_p = "C:\\Borivoj\\RUST\\Elusion\\SalesData2022.csv";
let df_sales = CustomDataFrame::new(sales_p, "s").await?;

let pivoted = df_sales
    .pivot(
        ["StockDate"],     // Row identifiers
        "TerritoryKey",    // Column to pivot
        "OrderQuantity",   // Value to aggregate
        "SUM"              // Aggregation function
    ).await?;

let result_pivot = pivoted.elusion("pivoted_df").await?;
result_pivot.display().await?;

// after .elusion() evaluation
let sales_path = "C:\\Borivoj\\RUST\\Elusion\\sales_order_report.csv";
let sales_order_df = CustomDataFrame::new(sales_path, "sales").await?;

let scalar_df = sales_order_df
    .select([
        "customer_name", 
        "order_date", 
        "ABS(billable_value) AS abs_billable_value",
        "ROUND(SQRT(billable_value), 2) AS SQRT_billable_value"])
    .filter("billable_value > 100.0")
    .order_by(["order_date"], [true])
    .limit(10);
// elusion evaluation
let scalar_res = scalar_df.elusion("scalar_df").await?;

let pivoted_scalar = scalar_res
    .pivot(
        ["customer_name"],          // Row identifiers
        "order_date",               // Column to pivot
        "abs_billable_value",       // Value to aggregate
        "SUM"                       // Aggregation function
    ).await?;

let pitvoted_scalar = pivoted_scalar.elusion("pivoted_df").await?;
pitvoted_scalar.display().await?;

// UNPIVOT
let unpivoted = result_pivot
    .unpivot(
        ["StockDate"],                         // ID columns
        ["TerritoryKey_1", "TerritoryKey_2"],  // Value columns to unpivot
        "Territory",                           // New name column
        "Quantity"                             // New value column
    ).await?;

let result_unpivot = unpivoted.elusion("unpivoted_df").await?;
result_unpivot.display().await?;

// example 2
let unpivot_scalar = scalar_res
    .unpivot(
        ["customer_name", "order_date"],      // Keep these as identifiers
        ["abs_billable_value", "sqrt_billable_value"], // Columns to unpivot
        "measure_name",                       // Name for the measure column
        "measure_value"                       // Name for the value column
    ).await?;

let result_unpivot_scalar = unpivot_scalar.elusion("unpivoted_df2").await?;
result_unpivot_scalar.display().await?;
```
---
## Statistical Functions
#### These Functions can give you quick statistical overview of your DataFrame columns and correlations
#### Currently available: display_stats(), display_null_analysis(), display_correlation_matrix()
```rust
df.display_stats(&[
    "abs_billable_value",
    "sqrt_billable_value",
    "double_billable_value",
    "percentage_billable"
]).await?;

=== Column Statistics ===
--------------------------------------------------------------------------------
Column: abs_billable_value
------------------------------------------------------------------------------
| Metric               |           Value |             Min |             Max |
------------------------------------------------------------------------------
| Records              |              10 | -               | -               |
| Non-null Records     |              10 | -               | -               |
| Mean                 |         1025.71 | -               | -               |
| Standard Dev         |          761.34 | -               | -               |
| Value Range          |               - | 67.4            | 2505.23         |
------------------------------------------------------------------------------

Column: sqrt_billable_value
------------------------------------------------------------------------------
| Metric               |           Value |             Min |             Max |
------------------------------------------------------------------------------
| Records              |              10 | -               | -               |
| Non-null Records     |              10 | -               | -               |
| Mean                 |           29.48 | -               | -               |
| Standard Dev         |           13.20 | -               | -               |
| Value Range          |               - | 8.21            | 50.05           |
------------------------------------------------------------------------------
    
// Display null analysis
// Keep None if you want all columns to be analized
df.display_null_analysis(None).await?;

----------------------------------------------------------------------------------------
| Column                         |      Total Rows |      Null Count | Null Percentage |
----------------------------------------------------------------------------------------
| total_billable                 |              10 |               0 |           0.00% |
| order_count                    |              10 |               0 |           0.00% |
| customer_name                  |              10 |               0 |           0.00% |
| order_date                     |              10 |               0 |           0.00% |
| abs_billable_value             |              10 |               0 |           0.00% |
----------------------------------------------------------------------------------------

// Display correlation matrix
df.display_correlation_matrix(&[
    "abs_billable_value",
    "sqrt_billable_value",
    "double_billable_value",
    "percentage_billable"
]).await?;

=== Correlation Matrix ===
-------------------------------------------------------------------------------------------
|                 | abs_billable_va | sqrt_billable_v | double_billable | percentage_bill |
-------------------------------------------------------------------------------------------
| abs_billable_va |            1.00 |            0.98 |            1.00 |            1.00 |
| sqrt_billable_v |            0.98 |            1.00 |            0.98 |            0.98 |
| double_billable |            1.00 |            0.98 |            1.00 |            1.00 |
| percentage_bill |            1.00 |            0.98 |            1.00 |            1.00 |
-------------------------------------------------------------------------------------------
```
---
# DATABASE Connectors 
### ODBC connectors available for MySQL and PostgreSQL
#### Requirements: You need to install Driver for you database ODBC connector
##### For ODBC connectivity on Ubuntu and macOS you need to install unixodbc:
##### Ubuntu/Debian: sudo apt-get install unixodbc-dev
##### macOS: brew install unixodbc
##### Windows: ODBC drivers are typically included with the OS

#### Don't forget that you can always load tables from Database into DataFrames and work with DataFrame API, but for better performance you should aggregate data in SQL server than push it into dataframe. 


### MySQL example

```rust
let connection_string = "
    Driver={MySQL ODBC 9.1 Unicode Driver};\ 
    Server=127.0.0.1;\
    Port=3306;\
    Database=your_database_name;\
    User=your_user_name;\
    Password=your_password";
    
let sql_query = "
    SELECT 
        b.beer_style,
        b.location,
        c.color,
        AVG(b.fermentation_time) AS avg_fermentation_time,
        ROUND(AVG(b.temperature), 2) AS avg_temperature,
        ROUND(AVG(b.quality_score), 2) AS avg_quality,
        ROUND(AVG(b.brewhouse_efficiency), 2) AS avg_efficiency,
        SUM(b.volume_produced) AS total_volume,
        ROUND(AVG(b.loss_during_brewing), 2) AS avg_brewing_loss,
        ROUND(AVG(b.loss_during_fermentation), 2) AS avg_fermentation_loss,
        ROUND(SUM(b.total_sales), 2) AS total_sales,
        ROUND(AVG(b.brewhouse_efficiency - (b.loss_during_brewing + b.loss_during_fermentation)), 2) AS net_efficiency
    FROM brewery_data b
    JOIN colors c ON b.color = c.color_number
    WHERE volume_produced > 1000
    GROUP BY b.beer_style, b.location, c.color
    HAVING avg_quality > 8
    ORDER BY total_sales DESC, avg_quality DESC
    LIMIT 20
";

let mysql_df = CustomDataFrame::from_db(
    connection_string,
    sql_query
).await?;

let analysis_df = mysql_df.elusion("brewing_analysis").await?;
analysis_df.display().await?;
```
### PostgreSQL example

```rust
let pg_connection = "\
        Driver={PostgreSQL UNICODE};\
        Servername=127.0.0.1;\
        Port=5433;\
        Database=your_database_name;\
        UID=your_user_name;\
        PWD=your_password;\
    ";

let sql_query = "
    SELECT 
        c.name,
        c.email,
        SUM(s.quantity * s.price) as total_sales,
        COUNT(*) as number_of_purchases
    FROM sales s
    JOIN customers c ON s.customer_id = c.id
    GROUP BY c.id, c.name, c.email
    ORDER BY total_sales DESC
";

let pg_df = CustomDataFrame::from_db(pg_connection, sql_query).await?;

let pg_res = pg_df.elusion("pg_res").await?;
pg_res.display().await?;
```
---
# AZURE Blob Storage Connector 

## Storage connector available with BLOB and DFS url endpoints, along with SAS token provided

### Currently supported file types .JSON and .CSV

#### DFS endpoint is “Data Lake Storage Gen2” and behave more like a real file system. This makes reading operations more efficient—especially at large scale.


### BLOB endpoint example

```rust
let blob_url= "https://your_storage_account_name.blob.core.windows.net/your-container-name";
let sas_token = "your_sas_token";

let df = CustomDataFrame::from_azure_with_sas_token(
        blob_url, 
        sas_token, 
        Some("folder-name/file-name"), // FILTERING is optional. Can be None if you want to take everything from Container
        "data" // alias for registering table
    ).await?;

let data_df = df.select(["*"]);

let test_data = data_df.elusion("data_df").await?;
test_data.display().await?;
```
### DFS endpoint example


```rust
let dfs_url= "https://your_storage_account_name.dfs.core.windows.net/your-container-name";
let sas_token = "your_sas_token";

let df = CustomDataFrame::from_azure_with_sas_token(
        dfs_url, 
        sas_token, 
        Some("folder-name/file-name"), // FILTERING is optional. Can be None if you want to take everything from Container
        "data" // alias for registering table
    ).await?;

let data_df = df.select(["*"]);

let test_data = data_df.elusion("data_df").await?;
test_data.display().await?;
```
---
# Pipeline Scheduler

### Time is set according to UTC


#### Currently available job frequencies

```rust
"1min","2min","5min","10min","15min","30min" ,
"1h","2h","3h","4h","5h","6h","7h","8h","9h","10h","11h","12h","24h" 
"2days","3days","4days","5days","6days","7days","14days","30days" 
```
### PipelineScheduler Example (parsing data from Azure BLOB Stoarge, DataFrame operation and Writing to Parquet)

```rust
use elusion::prelude::*;

#[tokio::main]

async fn main() -> ElusionResult<()>{
    
// Create Pipeline Scheduler 
let scheduler = PipelineScheduler::new("5min", || async {

let dfs_url= "https://your_storage_account_name.dfs.core.windows.net/your-container-name";
let sas_token = "your_sas_token";
// Read from Azure
let header_df = CustomDataFrame::from_azure_with_sas_token(
    dfs_url,
    dfs_sas_token,
    Some("folder_name/"), // Optional: FILTERING can filter any part of string: file path, file name...
    "head"
).await?;

// DataFrame operation
let headers_payments = header_df
   .select(["Brand", "Id", "Name", "Item", "Bill", "Tax",
           "ServCharge", "Percentage", "Discount", "Date"])
   .agg([
       "SUM(Bill) AS total_bill",
       "SUM(Tax) AS total_tax", 
       "SUM(ServCharge) AS total_service",
       "AVG(Percentage) AS avg_percentage",
       "COUNT(*) AS transaction_count",
       "SUM(ServCharge) / SUM(Bill) * 100 AS service_ratio"
   ])
   .group_by(["Brand", "Date"])
   .filter("Bill > 0")
   .order_by(["total_bill"], [true])

let headers_data = headers_payments.elusion("headers_df").await?;

// Write output
headers_data
    .write_to_parquet(
        "overwrite",
        "C:\\Borivoj\\RUST\\Elusion\\Scheduler\\sales_data.parquet",
        None
    )
    .await?;
    
    Ok(())

}).await?;

scheduler.shutdown().await?;

Ok(())
}

```
---
# JSON files

### Currently supported files can include: Fileds, Arrays, Objects. 

#### Best performance with flat json ("key":"value") 

#### for JSON, all field types are infered to VARCHAR/TEXT/STRING

```rust
// example json structure with key:value pairs
{
"name": "Adeel Solangi",
"language": "Sindhi",
"id": "V59OF92YF627HFY0",
"bio": "Donec lobortis eleifend condimentum. Cras dictum dolor lacinia lectus vehicula rutrum.",
"version": 6.1
}

let json_path = "C:\\Borivoj\\RUST\\Elusion\\test.json";
let json_df = CustomDataFrame::new(json_path, "test").await?;

let df = json_df.select(["*"]).limit(10);

let result = df.elusion("df").await?;
result.display().await?;

// example json structure with Fields and Arrays
[
  {
    "id": "1",
    "name": "Form 1",
    "fields": [
      {"key": "first_name", "type": "text", "required": true},
      {"key": "age", "type": "number", "required": false},
      {"key": "email", "type": "email", "required": true}
    ]
  },
  {
    "id": "2",
    "name": "Form 2",
    "fields": [
      {"key": "address", "type": "text", "required": false},
      {"key": "phone", "type": "tel", "required": true}
    ]
  },
  {
    "id": "3",
    "name": "Form 3",
    "fields": [
      {"key": "notes", "type": "textarea", "required": false},
      {"key": "date", "type": "date", "required": true},
      {"key": "status", "type": "select", "required": true}
    ]
  }
]

let json_path = "C:\\Borivoj\\RUST\\Elusion\\test2.json";
let json_df = CustomDataFrame::new(json_path, "test2").await?;
```
---
# REST API

### Creating JSON files from REST API's

#### Customizable Headers, Params, Pagination, Date Ranges...

### FROM API

```rust
// example 1
let posts_df = ElusionApi::new();
posts_df
    .from_api(
        "https://jsonplaceholder.typicode.com/posts", // url
        "C:\\Borivoj\\RUST\\Elusion\\JSON\\posts_data.json" // path where json will be stored
    ).await?;

// example 2
let users_df = ElusionApi::new();
users_df.from_api(
    "https://jsonplaceholder.typicode.com/users",
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\users_data.json",
).await?;

// example 3
let ceo = ElusionApi::new();
ceo.from_api(
    "https://dog.ceo/api/breeds/image/random/3",
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\ceo_data.json"
).await?;
```
### FROM API WITH HEADERS

```rust
// example 1
let mut headers = HashMap::new();
headers.insert("Custom-Header".to_string(), "test-value".to_string());

let bin_df = ElusionApi::new();
bin_df.from_api_with_headers(
    "https://httpbin.org/headers",  // url
    headers,                        // headers
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\bin_data.json",  // path where json will be stored
).await?;
    
// example 2
let mut headers = HashMap::new();
headers.insert("Accept".to_string(), "application/vnd.github.v3+json".to_string());
headers.insert("User-Agent".to_string(), "elusion-dataframe-test".to_string());

let git_hub = ElusionApi::new();
git_hub.from_api_with_headers(
    "https://api.github.com/search/repositories?q=rust+language:rust&sort=stars&order=desc",
    headers,
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\git_hub_data.json"
).await?;

// example 3
let mut headers = HashMap::new();
headers.insert("Accept".to_string(), "application/json".to_string());
headers.insert("X-Version".to_string(), "1".to_string());

let pokemon_df = ElusionApi::new();
pokemon_df.from_api_with_headers(
    "https://pokeapi.co/api/v2/pokemon", 
    headers,
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\pokemon_data.json"
).await?;
```
### FROM API WITH PARAMS

```rust
// Using OpenLibrary API with params
let mut params = HashMap::new();
params.insert("q", "rust programming");
params.insert("limit", "10");

let open_lib = ElusionApi::new();
open_lib.from_api_with_params(
    "https://openlibrary.org/search.json",           // url
    params,                                          // params
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\open_lib_data.json",  // path where json will be stored
).await?;

// Random User Generator API with params
let mut params = HashMap::new();
params.insert("results", "10");
params.insert("nat", "us,gb");

let generator = ElusionApi::new(); 
generator.from_api_with_params(
    "https://randomuser.me/api",
    params,
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\generator_data.json"
).await?;

// JSON Placeholder with multiple endpoints
let mut params = HashMap::new();
params.insert("userId", "1");
params.insert("_limit", "5");

let multi = ElusionApi::new(); 
multi.from_api_with_params(
    "https://jsonplaceholder.typicode.com/posts",
    params,
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\multi_data.json"
).await?;

// NASA Astronomy Picture of the Day
let mut params = HashMap::new();
params.insert("count", "5");
params.insert("thumbs", "true");

let nasa = ElusionApi::new(); 
nasa.from_api_with_params(
    "https://api.nasa.gov/planetary/apod",
    params,
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\nasa_pics_data.json"
).await?;

// example 5
let mut params = HashMap::new();
params.insert("brand", "elusion");
params.insert("password", "some_password");
params.insert("siteid", "993");
params.insert("Datefrom", "01 jan 2025 06:00");
params.insert("Dateto", "31 jan 2025 06:00");
params.insert("user", "borivoj");

let api = ElusionApi::new();
api.from_api_with_params(
    "https://salesapi.net.co.rs/SSPAPI/api/data",
    params,
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\sales_jan_2025.json"
).await?;
```
### FROM API WITH PARAMS AND HEADERS

```rust
let mut params = HashMap::new();
params.insert("since", "2024-01-01T00:00:00Z");
params.insert("until", "2024-01-07T23:59:59Z");

let mut headers = HashMap::new();
headers.insert("Accept".to_string(), "application/vnd.github.v3+json".to_string());
headers.insert("User-Agent".to_string(), "elusion-dataframe-test".to_string());

let commits_df = ElusionApi::new();
commits_df.from_api_with_params_and_headers(
    "https://api.github.com/repos/rust-lang/rust/commits",    // url
    params,                                                   // params
    headers,                                                 // headers
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\commits_data.json",  // path where json will be stored
).await?;
```
### FROM API WITH DATES

```rust
// example 1
let post_df = ElusionApi::new();
post_df.from_api_with_dates(
    "https://jsonplaceholder.typicode.com/posts",            // url
    "2024-01-01",                                           // date from
    "2024-01-07",                                           // date to
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\post_data.json",  // path where json will be stored
).await?;

// Example 2: COVID-19 historical data
let covid_df = ElusionApi::new();
covid_df.from_api_with_dates(
    "https://disease.sh/v3/covid-19/historical/all",
    "2024-01-01",
    "2024-01-07",
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\covid_data.json"
).await?;
```
### FROM API WITH PAGINATION

```rust
// example 1
let reqres = ElusionApi::new();
reqres.from_api_with_pagination(
    "https://reqres.in/api/users",
    1,      // page
    10,      // per_page
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\reqres_data.json"
).await?;
```
### FROM API WITH SORT

```rust
let movie_db = ElusionApi::new();
movie_db.from_api_with_sort(
    "https://api.themoviedb.org/3/discover/movie", // base url
    "popularity",   // sort field
    "desc",         // order
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\popular_movies.json"
).await?;
```
### FROM API WITH HEADERS AND SORT

```rust
let mut headers = HashMap::new();
headers.insert("Authorization".to_string(), "Bearer YOUR_TMDB_API_KEY".to_string());
headers.insert("accept".to_string(), "application/json".to_string());

let movie_db = ElusionApi::new();
movie_db.from_api_with_headers_and_sort(
    "https://api.themoviedb.org/3/discover/movie",  // base url
    headers,                                        // headers
    "popularity",                                   // sort field
    "desc",                                        // order
    "C:\\Borivoj\\RUST\\Elusion\\JSON\\popular_movies1.json"
).await?;
```
---
# WRITERS


## Writing to Parquet File

#### We have 2 writing modes: **Overwrite** and **Append**

```rust
// overwrite existing file
result_df
    .write_to_parquet(
        "overwrite",
        "C:\\Path\\To\\Your\\test.parquet",
        None // I've set WriteOptions to default for writing Parquet files, so keep it None
    )
    .await?;

// append to exisiting file
result_df
    .write_to_parquet(
        "append",
        "C:\\Path\\To\\Your\\test.parquet",
        None // I've set WriteOptions to default for writing Parquet files, so keep it None
    ) 
    .await?;
```
## Writing to CSV File


#### CSV Writing options are **mandatory**

##### has_headers: TRUE is dynamically set for Overwrite mode, and FALSE for Append mode.

```rust
let custom_csv_options = CsvWriteOptions {
        delimiter: b',',
        escape: b'\\',
        quote: b'"',
        double_quote: false,
        null_value: "NULL".to_string(),
    };
```
#### We have 2 writing modes: Overwrite and Append

```rust

// overwrite existing file
result_df
    .write_to_csv(
        "overwrite", 
        "C:\\Borivoj\\RUST\\Elusion\\agg_sales.csv", 
        custom_csv_options
    )
    .await?;

// append to exisiting file
result_df
    .write_to_csv(
        "append", 
        "C:\\Borivoj\\RUST\\Elusion\\agg_sales.csv", 
        custom_csv_options
    )
    .await?;

```
## Writing to DELTA table / lake 

#### We can write to delta in 2 modes **Overwrite** and **Append**

#### Partitioning column is OPTIONAL and if you decide to use column for partitioning, make sure that you don't need that column as you won't be able to read it back to dataframe

#### Once you decide to use partitioning column for writing your delta table, if you want to APPEND to it, append also need to have same column for partitioning

```rust
// Overwrite
result_df
    .write_to_delta_table(
        "overwrite",
        "C:\\Borivoj\\RUST\\Elusion\\agg_sales", 
        Some(vec!["order_date".into()]), 
    )
    .await
    .expect("Failed to overwrite Delta table");
// Append
result_df
    .write_to_delta_table(
        "append",
        "C:\\Borivoj\\RUST\\Elusion\\agg_sales",
        Some(vec!["order_date".into()]),
    )
    .await
    .expect("Failed to append to Delta table");
```
## Writing Parquet to Azure BLOB Storage 

#### We have 2 writing options "overwrite" and "append"

#### Writing is set to Default, Compression: SNAPPY and Parquet 2.0

#### Threshold file size is 1GB

```rust
let df = CustomDataFrame::new(csv_data, "sales").await?; 

let query = df.select(["*"]);

let data = query.elusion("df_sales").await?;

let url_to_folder = "https://your_storage_account_name.dfs.core.windows.net/your-container-name/folder/sales.parquet";
let sas_write_token = "your_sas_token"; // make sure SAS token has writing permissions

data.write_parquet_to_azure_with_sas(
    "overwrite",
    url_to_folder,
    sas_write_token
).await?;

// append version
data.write_parquet_to_azure_with_sas(
    "append",
    url_to_folder,
    sas_write_token
).await?;
```
---
# REPORTING

### CREATING REPORT with Interactive Plots/Visuals and Tables

### Export Table data to EXCEL and CSV

#### Currently available Interactive Plots: TimeSeries, Box, Bar, Histogram, Pie, Donut, Scatter...

#### Interactive Tables can: Paginate pages, Filter, Reorder, Resize columns...

```rust
let ord = "C:\\Borivoj\\RUST\\Elusion\\sales_order_report.csv";
let sales_order_df = CustomDataFrame::new(ord, "ord").await?;

let mix_query = sales_order_df.clone()
.select([
    "customer_name",
    "order_date",
    "ABS(billable_value) AS abs_billable_value",
    "ROUND(SQRT(billable_value), 2) AS SQRT_billable_value",
    "billable_value * 2 AS double_billable_value",  // Multiplication
    "billable_value / 100 AS percentage_billable"  // Division
])
.agg([
    "ROUND(AVG(ABS(billable_value)), 2) AS avg_abs_billable",
    "SUM(billable_value) AS total_billable",
    "MAX(ABS(billable_value)) AS max_abs_billable",
    "SUM(billable_value) * 2 AS double_total_billable",      // Operator-based aggregation
    "SUM(billable_value) / 100 AS percentage_total_billable" // Operator-based aggregation
])
.filter("billable_value > 50.0")
.group_by_all()
.order_by_many([
    ("total_billable", false),  // Order by total_billable descending
    ("max_abs_billable", true), // Then by max_abs_billable ascending
]);

let mix_res = mix_query.elusion("scalar_df").await?;

//INTERACTIVE PLOTS
// Line plot showing sales over time
let line = mix_res.plot_line(
    "order_date", // - x_col: column name for x-axis (can be date or numeric)
    "double_billable_value", // - y_col: column name for y-axis
    true,  // - show_markers: true to show points, false for line only
    Some("Sales over time") // - title: optional custom title (can be None)
).await?;

// Bar plot showing aggregated values
let bars = mix_res
   .plot_bar(
       "customer_name",         // X-axis: Customer names
       "total_billable",        // Y-axis: Total billable amount
       Some("Customer Total Sales") // Title of the plot
   ).await?;

// Time series showing sales trend
let time_series = mix_res
   .plot_time_series(
       "order_date",           // X-axis: Date column (must be Date32 type)
       "total_billable",       // Y-axis: Total billable amount
       true,                   // Show markers on the line
       Some("Sales Trend Over Time") // Title of the plot
   ).await?;

// Histogram showing distribution of abs billable values
let histogram = mix_res
   .plot_histogram(
       "abs_billable_value",   // Data column for distribution analysis
       Some("Distribution of Sale Values") // Title of the plot
   ).await?;

// Box plot showing abs billable value distribution
let box_plot = mix_res
   .plot_box(
       "abs_billable_value",   // Value column for box plot
       Some("customer_name"),   // Optional grouping column
       Some("Sales Distribution by Customer") // Title of the plot
   ).await?;

// Scatter plot showing relationship between original and doubled values
let scatter = mix_res
   .plot_scatter(
       "abs_billable_value",   // X-axis: Original values
       "double_billable_value", // Y-axis: Doubled values
       Some(8)                 // Optional marker size
   ).await?;

// Pie chart showing sales distribution
let pie = mix_res
   .plot_pie(
       "customer_name",        // Labels for pie segments
       "total_billable",       // Values for pie segments
       Some("Sales Share by Customer") // Title of the plot
   ).await?;

// Donut chart alternative view
let donut = mix_res
   .plot_donut(
       "customer_name",        // Labels for donut segments
       "percentage_total_billable", // Values as percentages
       Some("Percentage Distribution") // Title of the plot
   ).await?;

 // Create Tables to add to report
let summary_table = mix_res.clone() //Clone for multiple usages
    .select([
        "customer_name",
        "total_billable",
        "avg_abs_billable",
        "max_abs_billable",
        "percentage_total_billable"
    ])
    .order_by_many([
        ("total_billable", false)
    ])
    .elusion("summary")
    .await?;

let transactions_table = mix_res
    .select([
        "customer_name",
        "order_date",
        "abs_billable_value",
        "double_billable_value",
        "percentage_billable"
    ])
    .order_by_many([
        ("order_date", false),
        ("abs_billable_value", false)
    ])
    .elusion("transactions")
    .await?;

// Create comprehensive dashboard with all plots
let plots = [
    (&line, "Sales Line"),                  // Line based analysis
    (&time_series, "Sales Timeline"),       // Time-based analysis
    (&bars, "Customer Sales"),              // Customer comparison
    (&histogram, "Sales Distribution"),      // Value distribution
    (&scatter, "Value Comparison"),         // Value relationships
    (&box_plot, "Customer Distributions"),   // Statistical distribution
    (&pie, "Sales Share"),                  // Share analysis
    (&donut, "Percentage View"),            // Percentage breakdown
];

// Add tables array
let tables = [
    (&summary_table, "Customer Summary"),
    (&transactions_table, "Transaction Details")
];

let layout = ReportLayout {
    grid_columns: 2, // Arrange plots in 2 columns
    grid_gap: 30, // 30px gap between plots
    max_width: 1600, // Maximum width of 1600px
    plot_height: 450, // Each plot 450px high
    table_height: 500,  // Height for tables
};
    
let table_options = TableOptions {
    pagination: true,       // Enable pagination for tables
    page_size: 15,         // Show 15 rows per page
    enable_sorting: true,   // Allow column sorting
    enable_filtering: true, // Allow column filtering
    enable_column_menu: true, // Show column menu (sort/filter/hide options)
    theme: "ag-theme-alpine".to_string(), // Use Alpine theme for modern look
};

// Generate the enhanced interactive report with all plots and tables
CustomDataFrame::create_report(
    Some(&plots),  // plots (Optional)
    Some(&tables),   // tables (Optional)
    "Interactive Sales Analysis Dashboard",  // report_title
    "C:\\Borivoj\\RUST\\Elusion\\Plots\\interactive_aggrid_dashboard.html", // filename
    Some(layout),      // layout_config (Optional)
    Some(table_options)  // table_options (Optional)
).await?;
```
### Dashboard Demo

![Dash](./images/interactivedash3.gif)
---
### License

Elusion is distributed under the [MIT License](https://opensource.org/licenses/MIT). 
However, since it builds upon [DataFusion](https://datafusion.apache.org/), which is distributed under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0), some parts of this project are subject to the terms of the Apache License 2.0.
For full details, see the [LICENSE.txt file](LICENSE.txt).

### Acknowledgments

This library leverages the power of Rust's type system and libraries like [DataFusion](https://datafusion.apache.org/)
, Appache Arrow, Arrow ODBC, Tokio Cron Scheduler, Tokio... for efficient query processing. Special thanks to the open-source community for making this project possible.

## Where you can find me:


LindkedIn - [LinkedIn](https://www.linkedin.com/in/borivojgrujicic/ )
YouTube channel - [YouTube](https://www.youtube.com/@RustyBiz)