# Elusion 🦀 DataFrame / Data Engineering Library

---
### If you find Elusion useful, buy me a coffee! ☕
[Buy me a coffee](https://coff.ee/elusion.rust)
---
Elusion is a high-performance DataFrame / Data Engineering library designed for in-memory data formats such as CSV, EXCEL, JSON, PARQUET, DELTA, as well as for SharePoint Connection, Azure Blob Storage Connections, Postgres Database Connection, MySql Database Connection, and REST API's for creating JSON files which can be forwarded to DataFrame.
Additionally you can easily create Reports and Dashboard by passing DataFrame results.
All of the DataFrame operations can be placed in PipelineScheduler for automated Data Engineering Pipelines.
Tailored for Data Engineers and Data Analysts seeking a powerful abstraction over data transformations. Elusion streamlines complex operations like filtering, joining, aggregating, and more with its intuitive, chainable DataFrame API, and provides a robust interface for managing and querying data efficiently, as well as Integrated Plotting and Interactive Dashboard features.
## Core Philosophy
Elusion wants you to be you!
Elusion offers flexibility in constructing queries without enforcing specific patterns or chaining orders, unlike SQL, PySpark, Polars, or Pandas. You can build your queries in ANY SEQUENCE THAT BEST FITS YOUR LOGIC, writing functions in ANY ORDER or a manner that makes sense to you. Regardless of the order of function calls, Elusion ensures consistent results.
### ALL DataFrame OPERATIONS AND EXAMPLES, that you will need, are bellow.
## Platform Compatibility
Tested for MacOS, Linux and Windows

## Security
Codebase has Undergone Rigorous Auditing and Security Testing, ensuring that it is fully prepared for Production.
## Key Features
### 🔄 Job Scheduling (PipelineScheduler)
Flexible Intervals: From 1 minute to 30 days scheduling intervals.
Graceful Shutdown: Built-in Ctrl+C signal handling for clean termination.
Async Support: Built on tokio for non-blocking operations.
### 🌐 External Data Sources Integration
- Azure Blob Storage: Direct integration with Azure Blob Storage for Reading and Writing data files.
- REST API's: Create JSON files from REST API endpoints with Customizable Headers, Params, Date Ranges, Pagination...
### 🌐 SharePoint Integration
- Elusion provides seamless integration with Microsoft SharePoint Online, allowing you to load data directly from SharePoint document libraries into DataFrames.
### 🚀 High-Performance DataFrame Query Operations
Seamless Data Loading: Easily load and process data from CSV, EXCEL, PARQUET, JSON, and DELTA table files.
SQL-Like Transformations: Execute transformations such as SELECT, AGG, STRING FUNCTIONS, JOIN, FILTER, HAVING, GROUP BY, ORDER BY, DATETIME and WINDOW with ease.
### 🚀 Caching and Views
The caching and views functionality offer several significant advantages over regular querying:
#### Reduced Computation Time, Memory Management, Query Optimization, Interactive Analysis, Multiple visualizations for Dashboards and Reports, Resource Utilization, Concurrency
### 📉 Aggregations and Analytics
Comprehensive Aggregations: Utilize built-in functions like SUM, AVG, MEAN, MEDIAN, MIN, COUNT, MAX, and more.
Advanced Scalar Math: Perform calculations using functions such as ABS, FLOOR, CEIL, SQRT, ISNAN, ISZERO, PI, POWER, and others.
### 🔗 Flexible Joins
Diverse Join Types: Perform joins using INNER, LEFT, RIGHT, FULL, and other join types.
Intuitive Syntax: Easily specify join conditions and aliases for clarity and simplicity.
### 🪟 Window Functions
Analytical Capabilities: Implement window functions like RANK, DENSE_RANK, ROW_NUMBER, and custom partition-based calculations to perform advanced analytics.
### 🔄 Pivot and Unpivot Functions
Data Reshaping: Transform your data structure using PIVOT and UNPIVOT functions to suit your analytical needs.
### 📊 Create REPORTS
Create HTML files with Interactive Dashboards with multiple interactive Plots and Tables.
Plots Available: TimeSeries, Bar, Pie, Donut, Histogram, Scatter, Box...
Tables can Paginate pages, Filter, Resize, Reorder columns...
Export Tables data to EXCEL and CSV
### 🧹 Clean Query Construction
Readable Queries: Construct SQL queries that are both readable and reusable.
Advanced Query Support: Utilize operations such as APPEND, UNION, UNION ALL, INTERSECT, and EXCEPT. For multiple Dataframea operations: APPEND_MANY, UNION_MANY, UNION_ALL_MANY.
### 🛠️ Easy-to-Use API
Chainable Interface: Build queries using a chainable and intuitive API for streamlined development.
Debugging Support: Access readable debug outputs of the generated SQL for easy verification and troubleshooting.
**Data Preview**: Quickly preview your data by displaying a subset of rows in the terminal.
**Composable Queries**: Seamlessly chain transformations to create reusable and testable workflows.
---
## Installation
To add **Elusion** to your Rust project, include the following lines in your `Cargo.toml` under `[dependencies]`:
```toml
elusion = "3.13.0"
tokio = { version = "1.45.0", features = ["rt-multi-thread"] }
```
## Rust version needed
```toml
>= 1.81
```
---
## Feature Flags
Elusion uses Cargo feature flags to keep the library lightweight and modular.
You can enable only the features you need, which helps reduce dependencies and compile time.
## Available Features
```rust
["postgres"]
```
Enables Postgres Database connectivity.
```rust
["mysql"]
```
Enables MySql Database connectivity
```rust
["azure"]
```
Enables Azure BLOB storage connectivity.
```rust
["sharepoint"]
```
Enables SharePoint connectivity.
```rust
["api"]
```
Enables HTTP API integration for fetching data from web services.
```rust
["dashboard"]
```
Enables data visualization and dashboard creation capabilities.
```rust
["excel"]
```
Enables writing DataFrame to Excel file.
```rust
["all"]
```
Enables all available features.
Usage:
- In your Cargo.toml, specify which features you want to enable:
- Add the POSTGRES feature when specifying the dependency:
```toml
[dependencies]
elusion = { version = "3.13.0", features = ["postgres"] }
```
- Using NO Features (minimal dependencies):
```rust
[dependencies]
elusion = "3.13.0"
```
- Using multiple specific features:
```rust
[dependencies]
elusion = { version = "3.13.0", features = ["dashboard", "api", "mysql"] }
```
- Using all features:
```rust
[dependencies]
elusion = { version = "3.13.0", features = ["all"] }
```
### Feature Implications
#### When a feature is not enabled, You'll receive an error:
#### Error: ***Warning***: API feature not enabled. Add feature under [dependencies]
---
## NORMALIZATION
#### DataFrame (your files) Column Names will be normalized to LOWERCASE(), TRIM() and REPLACE(" ","_")
#### All DataFrame query expresions, functions, aliases and column names will be normalized to LOWERCASE(), TRIM() and REPLACE(" ","_")
---
## Schema
#### SCHEMA IS DYNAMICALLY INFERED
---
# Usage examples:
### MAIN function
```rust
// Import everything needed
use elusion::prelude::*;
#[tokio::main]
async fn main() -> ElusionResult<()> {
Ok(())
}
```
---
# CREATING DATA FRAMES
---
### - Loading data into CustomDataFrame can be from:
#### - Empty() DataFrames
#### - In-Memory data formats: CSV, EXCEL, JSON, PARQUET, DELTA
#### - SharePoint
#### - Azure Blob Storage endpoints (BLOB, DFS)
#### - Postgres Database SQL Queries
#### - MySQL Database Queries
#### - REST API -> json -> DataFrame
#### -> NEXT is example for reading data from local files,
#### at the end are examples for Azure Blob Storage, Postgres and MySQL Databases
---
### LOADING data from Files into CustomDataFrame (in-memory data formats)
#### - File extensions are automatically recognized
#### - All you have to do is to provide path to your file
## Creating CustomDataFrame
#### 2 arguments needed: **Path**, **Table Alias**
#### File extensions are automatically recognized (csv, excel, json, parquet, delta)
### LOADING data from CSV into CustomDataFrame
```rust
let csv_path = "C:\\BorivojGrujicic\\RUST\\Elusion\\csv_data.csv";
let df = CustomDataFrame::new(csv_path, "csv_data").await?;
```
### LOADING data from EXCEL into CustomDataFrame
```rust
let excel_path = "C:\\BorivojGrujicic\\RUST\\Elusion\\excel_data.xlsx";
let df = CustomDataFrame::new(excel_path, "xlsx_data").await?;
```
### LOADING data from PARQUET into CustomDataFrame
```rust
let parquet_path = "C:\\BorivojGrujicic\\RUST\\Elusion\\prod_data.parquet";
let df = CustomDataFrame::new(parquet_path, "parq_data").await?;
```
### LOADING data from JSON into CustomDataFrame
```rust
let json_path = "C:\\BorivojGrujicic\\RUST\\Elusion\\mongo_data.json";
let df = CustomDataFrame::new(json_path, "json_data").await?;
```
### LOADING data from DELTA table into CustomDataFrame
```rust
let delta_path = "C:\\BorivojGrujicic\\RUST\\Elusion\\agg_sales"; // for DELTA you just specify folder name without extension
let df = CustomDataFrame::new(delta_path, "delta_data").await?;
```
---
### LOADING data from LOCAL FOLDER into CustomDataFrame
#### - Automatically loads and combines multiple files from a folder
#### - Supports CSV, EXCEL, JSON, and PARQUET files
#### - Handles schema compatibility and column reordering automatically
#### - Uses UNION ALL to combine all files
## Loading All Files from Folder
#### 3 arguments needed: **Folder Path**, **File Extensions Filter (Optional)**, **Result Alias**
#### Loads all supported files and combines them into a single DataFrame
```rust
// Load all supported files from folder
let combined_data = CustomDataFrame::load_folder(
"C:\\BorivojGrujicic\\RUST\\Elusion\\SalesReports",
None, // Load all supported file types (csv, xlsx, json, parquet)
"combined_sales_data"
).await?;
// Load only specific file types
let csv_excel_data = CustomDataFrame::load_folder(
"C:\\BorivojGrujicic\\RUST\\Elusion\\SalesReports",
Some(vec!["csv", "xlsx"]), // Only load CSV and Excel files
"filtered_data"
).await?;
```
### LOADING data from LOCAL FOLDER with FILENAME TRACKING into CustomDataFrame
#### - Same as load_folder but adds "filename_added" column to track source files
#### - Perfect for time-series data where filename contains date information
#### - Automatically loads and combines multiple files from a folder
#### - Supports CSV, EXCEL, JSON, and PARQUET files
## Loading Files from Folder with Filename Column
#### 3 arguments needed: **Folder Path**, **File Extensions Filter (Optional)**, **Result Alias**
#### Adds "filename_added" column and combines all files into a single DataFrame
```rust
// Load files with filename tracking
let data_with_source = CustomDataFrame::load_folder_with_filename_column(
"C:\\BorivojGrujicic\\RUST\\Elusion\\DailyReports",
None, // Load all supported file types
"daily_data_with_source"
).await?;
// Load only specific file types with filename tracking
let excel_files_with_source = CustomDataFrame::load_folder_with_filename_column(
"C:\\BorivojGrujicic\\RUST\\Elusion\\MonthlySales",
Some(vec!["xlsx", "xls"]), // Only Excel files
"monthly_excel_data"
).await?;
```
---
### LOADING data from Azure BLOB Storage into CustomDataFrame (**scroll till the end for FULL example**)
```rust
let df = CustomDataFrame::from_azure_with_sas_token(
blob_url,
sas_token,
Some("folder-name/file-name"), // FILTERING is optional. Can be None if you want to take everything from Container
"data" // alias for registering table
).await?;
```
### LOADING data from POSTGRES into CustomDataFrame (**scroll till the end for FULL example with config, conn and query**)
```rust
let df = CustomDataFrame::from_postgres(&conn, query, "df_alias").await?;
```
### LOADING data from MySQL into CustomDataFrame (**scroll till the end for FULL example with config, conn and query**)
```rust
let df = CustomDataFrame::from_mysql(&conn, query, "df_alias").await?;
```
---
## CREATE EMPTY DATA FRAME
#### Create empty() DataFrame and populate it with data
```rust
let temp_df = CustomDataFrame::empty().await?;
let date_table = temp_df
.datetime_functions([
"CURRENT_DATE() as current_date",
"DATE_TRUNC('week', CURRENT_DATE()) AS week_start",
"DATE_TRUNC('week', CURRENT_DATE()) + INTERVAL '1 week' AS next_week_start",
"DATE_PART('year', CURRENT_DATE()) AS current_year",
"DATE_PART('week', CURRENT_DATE()) AS current_week_num",
])
.elusion("date_table").await?;
date_table.display().await?;
RESULT:
+--------------+---------------------+---------------------+--------------+------------------+
| 2025-03-07 | 2025-03-03T00:00:00 | 2025-03-10T00:00:00 | 2025.0 | 10.0 |
+--------------+---------------------+---------------------+--------------+------------------+
```
---
## CREATE DATE TABLE
#### Create Date Table from Range of Dates
```rust
let date_table = CustomDataFrame::create_date_range_table(
"2025-01-01", // start date
"2025-12-31", // end date
"calendar_2025" // table alias
).await?;
date_table.display().await?;
RESULT:
+------------+------+-------+-----+---------+----------+-------------+------------------+-------------+------------+-------------+---------------+------------+------------+
| 2025-01-01 | 2025 | 1 | 1 | 1 | 1 | 3 | Wednesday | 1 | 2024-12-29 | 2025-01-01 | 2025-01-01 | 2025-01-01 | false |
| 2025-01-02 | 2025 | 1 | 2 | 1 | 1 | 4 | Thursday | 2 | 2024-12-29 | 2025-01-01 | 2025-01-01 | 2025-01-01 | false |
| 2025-01-03 | 2025 | 1 | 3 | 1 | 1 | 5 | Friday | 3 | 2024-12-29 | 2025-01-01 | 2025-01-01 | 2025-01-01 | false |
| 2025-01-04 | 2025 | 1 | 4 | 1 | 1 | 6 | Saturday | 4 | 2024-12-29 | 2025-01-01 | 2025-01-01 | 2025-01-01 | true |
| 2025-01-05 | 2025 | 1 | 5 | 1 | 1 | 0 | Sunday | 5 | 2025-01-05 | 2025-01-01 | 2025-01-01 | 2025-01-01 | true |
| 2025-01-06 | 2025 | 1 | 6 | 1 | 2 | 1 | Monday | 6 | 2025-01-05 | 2025-01-01 | 2025-01-01 | 2025-01-01 | false |
| 2025-01-07 | 2025 | 1 | 7 | 1 | 2 | 2 | Tuesday | 7 | 2025-01-05 | 2025-01-01 | 2025-01-01 | 2025-01-01 | false |
| 2025-01-08 | 2025 | 1 | 8 | 1 | 2 | 3 | Wednesday | 8 | 2025-01-05 | 2025-01-01 | 2025-01-01 | 2025-01-01 | false |
| 2025-01-09 | 2025 | 1 | 9 | 1 | 2 | 4 | Thursday | 9 | 2025-01-05 | 2025-01-01 | 2025-01-01 | 2025-01-01 | false |
| .......... | .... | . | . | . | . | . | ................ | .......... | .......... | .......... | ............. | ...........| .......... |
+------------+------+-------+-----+---------+----------+-------------+------------------+-------------+------------+-------------+---------------+------------+------------+
```
---
## CREATE DATE TABLE WITH CUSTOM FORMATS
#### You can create Date Table with Custom formats (ISO, Compact, Human Readable...) and week, month, quarter, year Ranges (start-end)
```rust
let date_table = CustomDataFrame::create_formatted_date_range_table(
"2025-01-01", // date start
"2025-12-31", // date end
"calendar_2025", // table alias
"date".to_string(), // first column name
DateFormat::HumanReadable, // 1 Jan 2025
true, // Include period ranges (start - end)
Weekday::Mon // Week starts on Monday
).await?;
date_table.display().await?;
RESULT:
+-------------+------+-------+-----+---------+----------+-------------+------------------+-------------+------------+-------------+-------------+-------------+-------------+---------------+-------------+-------------+-------------+
| 1 Jan 2025 | 2025 | 1 | 1 | 1 | 1 | 2 | Wednesday | 1 | false | 30 Dec 2024 | 5 Jan 2025 | 1 Jan 2025 | 31 Jan 2025 | 1 Jan 2025 | 31 Mar 2025 | 1 Jan 2025 | 31 Dec 2025 |
| 2 Jan 2025 | 2025 | 1 | 2 | 1 | 1 | 3 | Thursday | 2 | false | 30 Dec 2024 | 5 Jan 2025 | 1 Jan 2025 | 31 Jan 2025 | 1 Jan 2025 | 31 Mar 2025 | 1 Jan 2025 | 31 Dec 2025 |
| 3 Jan 2025 | 2025 | 1 | 3 | 1 | 1 | 4 | Friday | 3 | false | 30 Dec 2024 | 5 Jan 2025 | 1 Jan 2025 | 31 Jan 2025 | 1 Jan 2025 | 31 Mar 2025 | 1 Jan 2025 | 31 Dec 2025 |
| 4 Jan 2025 | 2025 | 1 | 4 | 1 | 1 | 5 | Saturday | 4 | true | 30 Dec 2024 | 5 Jan 2025 | 1 Jan 2025 | 31 Jan 2025 | 1 Jan 2025 | 31 Mar 2025 | 1 Jan 2025 | 31 Dec 2025 |
| 5 Jan 2025 | 2025 | 1 | 5 | 1 | 1 | 6 | Sunday | 5 | true | 30 Dec 2024 | 5 Jan 2025 | 1 Jan 2025 | 31 Jan 2025 | 1 Jan 2025 | 31 Mar 2025 | 1 Jan 2025 | 31 Dec 2025 |
| 6 Jan 2025 | 2025 | 1 | 6 | 1 | 2 | 0 | Monday | 6 | false | 6 Jan 2025 | 12 Jan 2025 | 1 Jan 2025 | 31 Jan 2025 | 1 Jan 2025 | 31 Mar 2025 | 1 Jan 2025 | 31 Dec 2025 |
| 7 Jan 2025 | 2025 | 1 | 7 | 1 | 2 | 1 | Tuesday | 7 | false | 6 Jan 2025 | 12 Jan 2025 | 1 Jan 2025 | 31 Jan 2025 | 1 Jan 2025 | 31 Mar 2025 | 1 Jan 2025 | 31 Dec 2025 |
| 8 Jan 2025 | 2025 | 1 | 8 | 1 | 2 | 2 | Wednesday | 8 | false | 6 Jan 2025 | 12 Jan 2025 | 1 Jan 2025 | 31 Jan 2025 | 1 Jan 2025 | 31 Mar 2025 | 1 Jan 2025 | 31 Dec 2025 |
| 9 Jan 2025 | 2025 | 1 | 9 | 1 | 2 | 3 | Thursday | 9 | false | 6 Jan 2025 | 12 Jan 2025 | 1 Jan 2025 | 31 Jan 2025 | 1 Jan 2025 | 31 Mar 2025 | 1 Jan 2025 | 31 Dec 2025 |
| ........... | .... | .. | .. | . | . | . | ......... | ... | ..... | ........... | .......... | .......... | ........... | .......... | ........... | .......... | ........... |
+-------------+------+-------+-----+---------+----------+-------------+------------------+-------------+------------+-------------+-------------+-------------+-------------+---------------+-------------+-------------+-------------+
```
### ALL AVAILABLE DATE FORMATS
```rust
IsoDate, // YYYY-MM-DD
IsoDateTime, // YYYY-MM-DD HH:MM:SS
UsDate, // MM/DD/YYYY
EuropeanDate, // DD.MM.YYYY
EuropeanDateDash, // DD-MM-YYYY
BritishDate, // DD/MM/YYYY
HumanReadable, // 1 Jan 2025
HumanReadableTime, // 1 Jan 2025 00:00
SlashYMD, // YYYY/MM/DD
DotYMD, // YYYY.MM.DD
CompactDate, // YYYYMMDD
YearMonth, // YYYY-MM
MonthYear, // MM-YYYY
MonthNameYear, // January 2025
Custom(String) // Custom format string
For Custom Date formats some of the common format specifiers:
%Y - Full year (2025)
%y - Short year (25)
%m - Month as number (01-12)
%b - Abbreviated month name (Jan)
%B - Full month name (January)
%d - Day of month (01-31)
%e - Day of month, space-padded ( 1-31)
%a - Abbreviated weekday name (Mon)
%A - Full weekday name (Monday)
%H - Hour (00-23)
%I - Hour (01-12)
%M - Minute (00-59)
%S - Second (00-59)
%p - AM/PM
EXAMPLES:
DateFormat::Custom("%d %b %Y %H:%M".to_string()), // "01 Jan 2025 00:00"
// ISO 8601 with T separator and timezone
DateFormat::Custom("%Y-%m-%dT%H:%M:%S%z".to_string())
// US date with 12-hour time
DateFormat::Custom("%m/%d/%Y %I:%M %p".to_string())
// Custom format with weekday
DateFormat::Custom("%A, %B %e, %Y".to_string()) // "Monday, January 1, 2025"
```
---
## CREATE VIEWS and CACHING
### Materialized Views:
For long-term storage of complex query results. When results need to be referenced by name. For data that changes infrequently. Example: Monthly sales summaries, customer metrics, product analytics
### Query Caching:
For transparent performance optimization. When the same query might be run multiple times in a session. For interactive analysis scenarios. Example: Dashboard queries, repeated data exploration.
```rust
let sales = "C:\\Borivoj\\RUST\\Elusion\\SalesData2022.csv";
let products = "C:\\Borivoj\\RUST\\Elusion\\Products.csv";
let customers = "C:\\Borivoj\\RUST\\Elusion\\Customers.csv";
let sales_df = CustomDataFrame::new(sales, "s").await?;
let customers_df = CustomDataFrame::new(customers, "c").await?;
let products_df = CustomDataFrame::new(products, "p").await?;
// Example 1: Using materialized view for customer count
// The TTL parameter (3600) specifies how long the view remains valid in seconds (1 hour)
customers_df
.select(["COUNT(*) as count"])
.limit(10)
.create_view("customer_count_view", Some(3600))
.await?;
// Access the view by name - no recomputation needed
let customer_count = CustomDataFrame::from_view("customer_count_view").await?;
// Example 2: Using query caching with complex joins and aggregations
// First execution computes and stores the result
let join_result = sales_df
.join_many([
(customers_df.clone(), ["s.CustomerKey = c.CustomerKey"], "INNER"),
(products_df.clone(), ["s.ProductKey = p.ProductKey"], "INNER"),
])
.select(["c.CustomerKey", "c.FirstName", "c.LastName", "p.ProductName"])
.agg([
"SUM(s.OrderQuantity) AS total_quantity",
"AVG(s.OrderQuantity) AS avg_quantity"
])
.group_by(["c.CustomerKey", "c.FirstName", "c.LastName", "p.ProductName"])
.having_many([
("total_quantity > 10"),
("avg_quantity < 100")
])
.order_by_many([
("total_quantity", true),
("p.ProductName", false)
])
.elusion_with_cache("sales_join") // caching query with DataFrame alias
.await?;
join_result.display().await?;
// Other useful cache/view management functions:
CustomDataFrame::invalidate_cache(&["table_name".to_string()]); // Clear cache for specific tables
CustomDataFrame::clear_cache(); // Clear entire cache
CustomDataFrame::refresh_view("view_name").await?; // Refresh a materialized view
CustomDataFrame::drop_view("view_name").await?; // Remove a materialized view
CustomDataFrame::list_views().await; // Get info about all views
```
---
# DATAFRAME WRANGLING
---
## SELECT
### ALIAS column names in SELECT() function (AS is case insensitive)
```rust
let df_AS = select_df
.select(["CustomerKey AS customerkey_alias", "FirstName as first_name", "LastName", "EmailAddress"]);
let df_select_all = select_df.select(["*"]);
let df_count_all = select_df.select(["COUNT(*)"]);
let df_distinct = select_df.select(["DISTINCT(column_name) as distinct_values"]);
```
---
## Where to use which Functions:
### Scalar and Operators -> in SELECT() function
### Aggregation Functions -> in AGG() function
### String Column Functions -> in STRING_FUNCTIONS() function
### DateTime Functions -> in DATETIME_FUNCTIONS() function
---
### Numerical Operators (supported +, -, * , / , %)
```rust
let num_ops_sales = sales_order_df
.select([
"customer_name",
"order_date",
"billable_value",
"billable_value * 2 AS double_billable_value", // Multiplication
"billable_value / 100 AS percentage_billable" // Division
])
.filter("billable_value > 100.0")
.order_by(["order_date"], [true])
.limit(10);
let num_ops_res = num_ops_sales.elusion("scalar_df").await?;
num_ops_res.display().await?;
```
### FILTER (evaluated before aggregations)
```rust
let filter_df = sales_order_df
.select(["customer_name", "order_date", "billable_value"])
.filter_many([("order_date > '2021-07-04'"), ("billable_value > 100.0")])
.order_by(["order_date"], [true])
.limit(10);
let filtered = filter_df.elusion("result_sales").await?;
filtered.display().await?;
// exmple 2
const FILTER_CUSTOMER: &str = "customer_name == 'Customer IRRVL'";
let filter_query = sales_order_df
.select([
"customer_name",
"order_date",
"ABS(billable_value) AS abs_billable_value",
"ROUND(SQRT(billable_value), 2) AS SQRT_billable_value",
"billable_value * 2 AS double_billable_value", // Multiplication
"billable_value / 100 AS percentage_billable" // Division
])
.agg([
"ROUND(AVG(ABS(billable_value)), 2) AS avg_abs_billable",
"SUM(billable_value) AS total_billable",
"MAX(ABS(billable_value)) AS max_abs_billable",
"SUM(billable_value) * 2 AS double_total_billable", // Operator-based aggregation
"SUM(billable_value) / 100 AS percentage_total_billable" // Operator-based aggregation
])
.filter(FILTER_CUSTOMER)
.group_by_all()
.order_by_many([
("total_billable", false), // Order by total_billable descending
("max_abs_billable", true), // Then by max_abs_billable ascending
])
```
### HAVING (evaluated after aggregations)
```rust
//Example 1 with aggregatied column names
let example1 = sales_df
.join_many([
(customers_df, ["s.CustomerKey = c.CustomerKey"], "INNER"),
(products_df, ["s.ProductKey = p.ProductKey"], "INNER"),
])
.select(["c.CustomerKey", "c.FirstName", "c.LastName", "p.ProductName"])
.agg([
"SUM(s.OrderQuantity) AS total_quantity",
"AVG(s.OrderQuantity) AS avg_quantity"
])
.group_by(["c.CustomerKey", "c.FirstName", "c.LastName", "p.ProductName"])
.having_many([
("total_quantity > 10"),
("avg_quantity < 100")
])
.order_by_many([
("total_quantity", true ),
("p.ProductName", false)
]);
let result = example1.elusion("sales_res").await?;
result.display().await?;
//Example 2 with aggregation in having
let df_having= sales_df
.join(customers_df, ["s.CustomerKey = c.CustomerKey"],
"INNER"
)
.select(["c.CustomerKey", "c.FirstName", "c.LastName"])
.agg([
"SUM(s.OrderQuantity) AS total_quantity",
"AVG(s.OrderQuantity) AS avg_quantity"
])
.group_by(["c.CustomerKey", "c.FirstName", "c.LastName"])
.having_many([
("SUM(s.OrderQuantity) > 10"),
("AVG(s.OrderQuantity) < 100")
])
.order_by(["total_quantity"], [true])
.limit(5);
let result = df_having.elusion("sales_res").await?;
result.display().await?;
```
### FILL_DOWN function - fill_down() - that fills down null values in column with firs non null values above
#### Imagine you have DataFrame like bellow with lots of null values.
```rust
+---------------------+---------------+----------------+----------+----------+
| null | null | null | null | null |
| null | null | null | null | null |
| | | | Dinner | null |
| Site Name | Location Name | Revenue Centre | Net | Gross |
| Babaluga | Bar | Beer | 95.24 | 110 |
| null | null | Food | 1080.04 | 1247.4 |
| null | null | Liquor | 0 | 0 |
| null | null | Non Alc. Bev | 51.08 | 59 |
| null | null | Wine | 64.94 | 75 |
| null | Terrace | Beer | 2642.89 | 3052.5 |
| null | null | Champagne | 450.2 | 520 |
| null | null | Food | 77974.82 | 90060.93 |
| null | null | Liquor | 21258.71 | 24554 |
| null | null | Non Alc. Bev | 15560.95 | 17973.5 |
| null | null | Tobacco | 19939.11 | 23030 |
| null | null | Wine | 18774.9 | 21685 |
+---------------------+---------------+----------------+----------+----------+
```
#### Now to remove null rows, empty value rows and to fill down this Dataframe we can write this:
```rust
let sales_data = df
.select(["Site","Location","Centre","Net","Gross"])
.filter_many([("Centre != 'null'"), ("Centre != ''"),("Centre != 'Revenue Centre'")])
.fill_down(["Site", "Location"])
.elusion("my_sales_data").await?;
sales_data.display().await?;
//THEN WE GET THIS RESULT
+---------------------+----------+--------------+----------+----------+
| Babaluga | Bar | Beer | 95.24 | 110 |
| Babaluga | Bar | Food | 1080.04 | 1247.4 |
| Babaluga | Bar | Liquor | 0 | 0 |
| Babaluga | Bar | Non Alc. Bev | 51.08 | 59 |
| Babaluga | Bar | Wine | 64.94 | 75 |
| Babaluga | Terrace | Beer | 2642.89 | 3052.5 |
| Babaluga | Terrace | Champagne | 450.2 | 520 |
| Babaluga | Terrace | Food | 77974.82 | 90060.93 |
| Babaluga | Terrace | Liquor | 21258.71 | 24554 |
| Babaluga | Terrace | Non Alc. Bev | 15560.95 | 17973.5 |
| Babaluga | Terrace | Tobacco | 19939.11 | 23030 |
| Babaluga | Terrace | Wine | 18774.9 | 21685 |
+---------------------+----------+--------------+----------+----------+
```
### SCALAR functions
```rust
let scalar_df = sales_order_df
.select([
"customer_name",
"order_date",
"ABS(billable_value) AS abs_billable_value",
"ROUND(SQRT(billable_value), 2) AS SQRT_billable_value"])
.filter("billable_value > 100.0")
.order_by(["order_date"], [true])
.limit(10);
let scalar_res = scalar_df.elusion("scalar_df").await?;
scalar_res.display().await?;
```
### AGGREGATE functions with nested Scalar functions
```rust
let scalar_df = sales_order_df
.select([
"customer_name",
"order_date"
])
.agg([
"ROUND(AVG(ABS(billable_value)), 2) AS avg_abs_billable",
"SUM(billable_value) AS total_billable",
"MAX(ABS(billable_value)) AS max_abs_billable",
"SUM(billable_value) * 2 AS double_total_billable", // Operator-based aggregation
"SUM(billable_value) / 100 AS percentage_total_billable" // Operator-based aggregation
])
.group_by(["customer_name", "order_date"])
.filter("billable_value > 100.0")
.order_by(["order_date"], [true])
.limit(10);
let scalar_res = scalar_df.elusion("scalar_df").await?;
scalar_res.display().await?;
```
### STRING functions
```rust
let df = sales_df
.select(["FirstName", "LastName"])
.string_functions([
"'New' AS new_old_customer",
"TRIM(c.EmailAddress) AS trimmed_email",
"CONCAT(TRIM(c.FirstName), ' ', TRIM(c.LastName)) AS full_name",
]);
let result_df = df.elusion("df").await?;
result_df.display().await?;
```
### Numerical Operators, Scalar Functions, Aggregated Functions...
```rust
let mix_query = sales_order_df
.select([
"customer_name",
"order_date",
"ABS(billable_value) AS abs_billable_value",
"ROUND(SQRT(billable_value), 2) AS SQRT_billable_value",
"billable_value * 2 AS double_billable_value", // Multiplication
"billable_value / 100 AS percentage_billable" // Division
])
.agg([
"ROUND(AVG(ABS(billable_value)), 2) AS avg_abs_billable",
"SUM(billable_value) AS total_billable",
"MAX(ABS(billable_value)) AS max_abs_billable",
"SUM(billable_value) * 2 AS double_total_billable", // Operator-based aggregation
"SUM(billable_value) / 100 AS percentage_total_billable" // Operator-based aggregation
])
.filter("billable_value > 50.0")
.group_by_all()
.order_by_many([
("total_billable", false), // Order by total_billable descending
("max_abs_billable", true), // Then by max_abs_billable ascending
]);
let mix_res = mix_query.elusion("scalar_df").await?;
mix_res.display().await?;
```
---
### Supported Aggregation functions
```rust
SUM, AVG, MEAN, MEDIAN, MIN, COUNT, MAX,
LAST_VALUE, FIRST_VALUE,
GROUPING, STRING_AGG, ARRAY_AGG, VAR, VAR_POP,
VAR_POPULATION, VAR_SAMP, VAR_SAMPLE,
BIT_AND, BIT_OR, BIT_XOR, BOOL_AND, BOOL_OR
```
### Supported Scalar Math Functions
```rust
ABS, FLOOR, CEIL, SQRT, ISNAN, ISZERO,
PI, POW, POWER, RADIANS, RANDOM, ROUND,
FACTORIAL, ACOS, ACOSH, ASIN, ASINH,
COS, COSH, COT, DEGREES, EXP,
SIN, SINH, TAN, TANH, TRUNC, CBRT,
ATAN, ATAN2, ATANH, GCD, LCM, LN,
LOG, LOG10, LOG2, NANVL, SIGNUM
```
---
## JOIN
#### JOIN examples with single condition and 2 dataframes, AGGREGATION, GROUP BY
```rust
let single_join = df_sales
.join(df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER")
.select(["s.OrderDate","c.FirstName", "c.LastName"])
.agg([
"SUM(s.OrderQuantity) AS total_quantity",
"AVG(s.OrderQuantity) AS avg_quantity",
])
.group_by(["s.OrderDate","c.FirstName","c.LastName"])
.having("total_quantity > 10")
.order_by(["total_quantity"], [false]) // true is ascending, false is descending
.limit(10);
let join_df1 = single_join.elusion("result_query").await?;
join_df1.display().await?;
```
### JOIN with single conditions and 3 dataframes, AGGREGATION, GROUP BY, HAVING, SELECT, ORDER BY
```rust
let many_joins = df_sales
.join_many([
(df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER"),
(df_products, ["s.ProductKey = p.ProductKey"], "INNER"),
])
.select([
"c.CustomerKey","c.FirstName","c.LastName","p.ProductName",
])
.agg([
"SUM(s.OrderQuantity) AS total_quantity",
"AVG(s.OrderQuantity) AS avg_quantity",
])
.group_by(["c.CustomerKey", "c.FirstName", "c.LastName", "p.ProductName"])
.having_many([("total_quantity > 10"), ("avg_quantity < 100")])
.order_by_many([
("total_quantity", true), // true is ascending
("p.ProductName", false) // false is descending
])
.limit(10);
let join_df3 = many_joins.elusion("df_joins").await?;
join_df3.display().await?;
```
### JOIN with multiple conditions and 2 data frames
```rust
let result_join = orders_df
.join(
customers_df,
["o.CustomerID = c.CustomerID" , "o.RegionID = c.RegionID"],
"INNER"
)
.select([
"o.OrderID",
"c.Name",
"o.OrderDate"
])
.string_functions([
"CONCAT(TRIM(c.Name), ' (', c.Email, ')') AS customer_info",
"UPPER(c.Status) AS customer_status",
"LEFT(c.Email, POSITION('@' IN c.Email) - 1) AS username"
])
.agg([
"SUM(o.Amount) AS total_amount",
"AVG(o.Quantity) AS avg_quantity",
"COUNT(DISTINCT o.OrderID) AS order_count",
"MAX(o.Amount) AS max_amount",
"MIN(o.Amount) AS min_amount"
])
.group_by([
"o.OrderID",
"c.Name",
"o.OrderDate",
"c.Email",
"c.Status"
]);
let res_joins = result_join.elusion("one_join").await?;
res_joins.display().await?;
```
### JOIN_MANY with multiple conditions and 3 data frames
```rust
let result_join_many = order_join_df
.join_many([
(customer_join_df,
["o.CustomerID = c.CustomerID" , "o.RegionID = c.RegionID"],
"INNER"
),
(regions_join_df,
["c.RegionID = r.RegionID" , "r.IsActive = true"],
"INNER"
)
])
.select(["o.OrderID","c.Name","r.RegionName", "r.CountryID"])
.string_functions([
"CONCAT(r.RegionName, ' (', r.CountryID, ')') AS region_info",
"CASE c.CreditLimit
WHEN 1000 THEN 'Basic'
WHEN 2000 THEN 'Premium'
ELSE 'Standard'
END AS credit_tier",
"CASE
WHEN c.CreditLimit > 2000 THEN 'High'
WHEN c.CreditLimit > 1000 THEN 'Medium'
ELSE 'Low'
END AS credit_status",
"CASE
WHEN o.Amount > 1000 AND c.Status = 'active' THEN 'Priority'
WHEN o.Amount > 500 THEN 'Regular'
ELSE 'Standard'
END AS order_priority",
"CASE r.RegionName
WHEN 'East Coast' THEN 'Eastern'
WHEN 'West Coast' THEN 'Western'
ELSE 'Other'
END AS region_category",
"CASE
WHEN EXTRACT(DOW FROM o.OrderDate) IN (0, 6) THEN 'Weekend'
ELSE 'Weekday'
END AS order_day_type"
])
.agg([
"SUM(o.Amount) AS total_amount",
"COUNT(*) AS row_count",
"SUM(o.Amount * (1 - o.Discount/100)) AS net_amount",
"ROUND(SUM(o.Amount) / COUNT(*), 2) AS avg_order_value",
"SUM(o.Amount * r.TaxRate) AS total_tax"
])
.group_by_all()
.having("total_amount > 200")
.order_by(["total_amount"], [false]);
let res_joins_many = result_join_many.elusion("many_join").await?;
res_joins_many.display().await?;
```
### JOIN_MANY with single condition and 3 dataframes, STRING FUNCTIONS, AGGREGATION, GROUP BY, HAVING_MANY, ORDER BY
```rust
let str_func_joins = df_sales
.join_many([
(df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER"),
(df_products, ["s.ProductKey = p.ProductKey"], "INNER"),
])
.select([
"c.CustomerKey",
"c.FirstName",
"c.LastName",
"c.EmailAddress",
"p.ProductName",
])
.string_functions([
"TRIM(c.EmailAddress) AS trimmed_email_address",
"CONCAT(TRIM(c.FirstName), ' ', TRIM(c.LastName)) AS full_name",
"LEFT(p.ProductName, 15) AS short_product_name",
"RIGHT(p.ProductName, 5) AS end_product_name",
])
.agg([
"COUNT(p.ProductKey) AS product_count",
"SUM(s.OrderQuantity) AS total_order_quantity",
])
.group_by_all()
.having_many([("total_order_quantity > 10"), ("product_count >= 1")])
.order_by_many([
("total_order_quantity", true),
("p.ProductName", false)
]);
let join_str_df3 = str_func_joins.elusion("df_joins").await?;
join_str_df3.display().await?;
```
#### Currently implemented join types
```rust
"INNER", "LEFT", "RIGHT", "FULL",
"LEFT SEMI", "RIGHT SEMI",
"LEFT ANTI", "RIGHT ANTI", "LEFT MARK"
```
---
### STRING FUNCTIONS
```rust
let string_functions_df = df_sales
.join_many([
(df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER"),
(df_products, ["s.ProductKey = p.ProductKey"], "INNER"),
])
.select([
"c.CustomerKey",
"c.FirstName",
"c.LastName",
"c.EmailAddress",
"p.ProductName"
])
.string_functions([
// Basic String Functions
"TRIM(c.EmailAddress) AS trimmed_email",
"LTRIM(c.EmailAddress) AS left_trimmed_email",
"RTRIM(c.EmailAddress) AS right_trimmed_email",
"UPPER(c.FirstName) AS upper_first_name",
"LOWER(c.LastName) AS lower_last_name",
"LENGTH(c.EmailAddress) AS email_length",
"LEFT(p.ProductName, 10) AS product_start",
"RIGHT(p.ProductName, 10) AS product_end",
"SUBSTRING(p.ProductName, 1, 5) AS product_substr",
// Concatenation
"CONCAT(c.FirstName, ' ', c.LastName) AS full_name",
"CONCAT_WS(' ', c.FirstName, c.LastName, c.EmailAddress) AS all_info",
// Position and Search
"POSITION('@' IN c.EmailAddress) AS at_symbol_pos",
"STRPOS(c.EmailAddress, '@') AS email_at_pos",
// Replacement and Modification
"REPLACE(c.EmailAddress, '@adventure-works.com', '@newdomain.com') AS new_email",
"TRANSLATE(c.FirstName, 'AEIOU', '12345') AS vowels_replaced",
"REPEAT('*', 5) AS stars",
"REVERSE(c.FirstName) AS reversed_name",
// Padding
"LPAD(c.CustomerKey::TEXT, 10, '0') AS padded_customer_id",
"RPAD(c.FirstName, 20, '.') AS padded_name",
// Case Formatting
"INITCAP(LOWER(c.FirstName)) AS proper_case_name",
// String Extraction
"SPLIT_PART(c.EmailAddress, '@', 1) AS email_username",
// Type Conversion
"TO_CHAR(s.OrderDate, 'YYYY-MM-DD') AS formatted_date"
])
.agg([
"COUNT(*) AS total_records",
"STRING_AGG(p.ProductName, ', ') AS all_products"
])
.filter("c.emailaddress IS NOT NULL")
.group_by_all()
.having("COUNT(*) > 1")
.order_by(["c.CustomerKey"], [true]);
let str_df = string_functions_df.elusion("df_joins").await?;
str_df.display().await?;
```
#### Currently Available String functions
```rust
1.Basic String Functions:
TRIM() - Remove leading/trailing spaces
LTRIM() - Remove leading spaces
RTRIM() - Remove trailing spaces
UPPER() - Convert to uppercase
LOWER() - Convert to lowercase
LENGTH() or LEN() - Get string length
LEFT() - Extract leftmost characters
RIGHT() - Extract rightmost characters
SUBSTRING() - Extract part of string
2. String concatenation:
CONCAT() - Concatenate strings
CONCAT_WS() - Concatenate with separator
3. String Position and Search:
POSITION() - Find position of substring
STRPOS() - Find position of substring
INSTR() - Find position of substring
LOCATE() - Find position of substring
4. String Replacement and Modification:
REPLACE() - Replace all occurrences of substring
TRANSLATE() - Replace characters
OVERLAY() - Replace portion of string
REPEAT() - Repeat string
REVERSE() - Reverse string characters
5. String Pattern Matching:
LIKE() - Pattern matching with wildcards
REGEXP() or RLIKE() - Pattern matching with regular expressions
6. String Padding:
LPAD() - Pad string on left
RPAD() - Pad string on right
SPACE() - Generate spaces
7. String Case Formatting:
INITCAP() - Capitalize first letter of each word
8. String Extraction:
SPLIT_PART() - Split string and get nth part
SUBSTR() - Get substring
9. String Type Conversion:
TO_CHAR() - Convert to string
CAST() - Type conversion
CONVERT() - Type conversion
10. Control Flow:
CASE()
```
---
### DATETIME FUNCTIONS
#### Work best with YYYY-MM-DD format
```rust
let dt_query = sales_order_df
.select([
"customer_name",
"order_date",
"delivery_date"
])
.datetime_functions([
// Current date/time comparisons
"CURRENT_DATE() AS today",
"CURRENT_TIME() AS current_time",
"CURRENT_TIMESTAMP() AS now",
"NOW() AS now_timestamp",
"TODAY() AS today_timestamp",
// Date binning (for time-series analysis)
"DATE_BIN('1 week', order_date, MAKE_DATE(2020, 1, 1)) AS weekly_bin",
"DATE_BIN('1 month', order_date, MAKE_DATE(2020, 1, 1)) AS monthly_bin",
// Date formatting
"DATE_FORMAT(order_date, '%Y-%m-%d') AS formatted_date",
"DATE_FORMAT(order_date, '%Y/%m/%d') AS formatted_date_alt",
// Basic date components
"DATE_PART('year', order_date) AS year",
"DATE_PART('month', order_date) AS month",
"DATE_PART('day', order_date) AS day",
// Quarters and weeks
"DATE_PART('quarter', order_date) AS order_quarter",
"DATE_PART('week', order_date) AS order_week",
// Day of week/year
"DATE_PART('dow', order_date) AS day_of_week",
"DATE_PART('doy', order_date) AS day_of_year",
// Analysis
"DATE_PART('day', delivery_date - order_date) AS delivery_days",
"DATE_PART('day', CURRENT_DATE() - order_date) AS days_since_order",
// Date truncation (alternative syntax)
"DATE_TRUNC('week', order_date) AS week_start",
"DATE_TRUNC('quarter', order_date) AS quarter_start",
"DATE_TRUNC('month', order_date) AS month_start",
"DATE_TRUNC('year', order_date) AS year_start",
// Complex date calculations
"CASE
WHEN DATE_PART('month', order_date) <= 3 THEN 'Q1'
WHEN DATE_PART('month', order_date) <= 6 THEN 'Q2'
WHEN DATE_PART('month', order_date) <= 9 THEN 'Q3'
ELSE 'Q4'
END AS fiscal_quarter",
// Date comparisons with current date
"CASE
WHEN order_date = CURRENT_DATE() THEN 'Today'
WHEN DATE_PART('day', CURRENT_DATE() - order_date) <= 7 THEN 'Last Week'
WHEN DATE_PART('day', CURRENT_DATE() - order_date) <= 30 THEN 'Last Month'
ELSE 'Older'
END AS order_recency",
// Time windows
"CASE
WHEN DATE_BIN('1 week', order_date, CURRENT_DATE()) = DATE_BIN('1 week', CURRENT_DATE(), CURRENT_DATE())
THEN 'This Week'
ELSE 'Previous Weeks'
END AS week_window",
// Fiscal year calculations
"CASE
WHEN DATE_PART('month', order_date) >= 7
THEN DATE_PART('year', order_date) + 1
ELSE DATE_PART('year', order_date)
END AS fiscal_year",
// Complex date logic - modified to work with Date32
"CASE
WHEN order_date < MAKE_DATE(2024, 1, 1) THEN 'Past'
ELSE 'Present'
END AS temporal_status",
"CASE
WHEN DATE_PART('hour', CURRENT_TIMESTAMP()) < 12 THEN 'Morning'
ELSE 'Afternoon'
END AS time_of_day"
])
.order_by(["order_date"], [false])
let dt_res = dt_query.elusion("datetime_df").await?;
dt_res.display().await?;
```
#### Currently Available DateTime Functions
```rust
CURRENT_DATE()
CURRENT_TIME()
CURRENT_TIMESTAMP()
NOW()
TODAY()
DATE_PART()
DATE_TRUNC()
DATE_BIN()
MAKE_DATE()
DATE_FORMAT()
```
---
### WINDOW functions
#### Aggregate, Ranking and Analytical functions
```rust
let window_query = df_sales
.join(df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER")
.select(["s.OrderDate","c.FirstName","c.LastName","s.OrderQuantity"])
.window("SUM(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) as running_total")
.window("AVG(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS running_avg")
.window("MIN(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS running_min")
.window("MAX(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS running_max")
.window("COUNT(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS running_count")
.window("ROW_NUMBER() OVER (ORDER BY c.CustomerKey) AS customer_index")
.window("ROW_NUMBER() OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) as row_num")
.window("DENSE_RANK() OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS dense_rnk")
.window("PERCENT_RANK() OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS pct_rank")
.window("CUME_DIST() OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS cume_dist")
.window("NTILE(4) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS quartile")
.window("FIRST_VALUE(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS first_qty")
.window("LAST_VALUE(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS last_qty")
.window("LAG(s.OrderQuantity, 1, 0) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS prev_qty")
.window("LEAD(s.OrderQuantity, 1, 0) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS next_qty")
.window("NTH_VALUE(s.OrderQuantity, 3) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate) AS third_qty");
let window_df = window_query.elusion("result_window").await?;
window_df.display().await?;
```
#### Rolling Window Functions
```rust
let rollin_query = df_sales
.join(df_customers, ["s.CustomerKey = c.CustomerKey"], "INNER")
.select(["s.OrderDate", "c.FirstName", "c.LastName", "s.OrderQuantity"])
.window("SUM(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS running_total")
.window("AVG(s.OrderQuantity) OVER (PARTITION BY c.CustomerKey ORDER BY s.OrderDate
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS full_partition_avg");
let rollin_df = rollin_query.elusion("rollin_result").await?;
rollin_df.display().await?;
```
---
## JSON functions
### .json()
#### function works with Columns that only have simple JSON values
#### example json structure: [{"Key1":"Value1","Key2":"Value2","Key3":"Value3"}]
#### example usage
```rust
let path = "C:\\Borivoj\\RUST\\Elusion\\jsonFile.csv";
let json_df = CustomDataFrame::new(path, "j").await?;
let df_extracted = json_df.json([
"ColumnName.'$Key1' AS column_name_1",
"ColumnName.'$Key2' AS column_name_2",
"ColumnName.'$Key3' AS column_name_3"
])
.select(["some_column1", "some_column2"])
.elusion("json_extract").await?;
df_extracted.display().await?;
```
```rust
RESULT:
+---------------+---------------+---------------+---------------+---------------+
| column_name_1 | column_name_2 | column_name_3 | some_column1 | some_column2 |
+---------------+---------------+---------------+---------------+---------------+
| registrations | 2022-09-15 | CustomerCode | 779-0009E3370 | 646443D134762 |
| registrations | 2023-09-11 | CustomerCode | 770-00009ED61 | 463497C334762 |
| registrations | 2017-10-01 | CustomerCode | 889-000049C9E | 634697C134762 |
| registrations | 2019-03-26 | CustomerCode | 000-00006C4D5 | 446397D134762 |
| registrations | 2021-08-31 | CustomerCode | 779-0009E3370 | 463643D134762 |
| registrations | 2019-05-09 | CustomerCode | 770-00009ED61 | 634697C934762 |
| registrations | 2005-10-24 | CustomerCode | 889-000049C9E | 123397C334762 |
| registrations | 2023-02-14 | CustomerCode | 000-00006C4D5 | 932393D134762 |
| registrations | 2021-01-20 | CustomerCode | 779-0009E3370 | 323297C334762 |
| registrations | 2018-07-17 | CustomerCode | 000-00006C4D5 | 322097C921462 |
+---------------+---------------+---------------+---------------+---------------+
```
### .json_array()
#### function works with Columns that has Array of objects with pathern "column.'$ValueField:IdField=IdValue' AS column_alias"
The function parameters:
column: The column containing the JSON array
ValueField: The field to extract from matching objects
IdField: The field to use as identifier
IdValue: The value to match on the identifier field
column_alias: The output column name
#### example json structure
```rust
[
{"Id":"Date","Value":"2022-09-15","ValueKind":"Date"},
{"Id":"MadeBy","Value":"Borivoj Grujicic","ValueKind":"Text"},
{"Id":"Timeline","Value":1.0,"ValueKind":"Number"},
{"Id":"ETR_1","Value":1.0,"ValueKind":"Number"}
]
```
#### example usage
```rust
let multiple_values = df_json.json_array([
"Value.'$Value:Id=Date' AS date",
"Value.'$Value:Id=MadeBy' AS made_by",
"Value.'$Value:Id=Timeline' AS timeline",
"Value.'$Value:Id=ETR_1' AS etr_1",
"Value.'$Value:Id=ETR_2' AS etr_2",
"Value.'$Value:Id=ETR_3' AS etr_3"
])
.select(["Id"])
.elusion("multiple_values")
.await?;
multiple_values.display().await?;
RESULT:
+-----------------+-------------------+----------+-------+-------+-------+--------+
| 2022-09-15 | Borivoj Grujicic | 1.0 | 1.0 | 1.0 | 1.0 | 77E10C |
| 2023-09-11 | | 5.0 | | | | 770C24 |
| 2017-10-01 | | | | | | 7795FA |
| 2019-03-26 | | 1.0 | | | | 77F2E6 |
| 2021-08-31 | | 5.0 | | | | 77926E |
| 2019-05-09 | | | | | | 77CC0F |
| 2005-10-24 | | | | | | 7728BA |
| 2023-02-14 | | | | | | 77F7F8 |
| 2021-01-20 | | | | | | 7731F6 |
| 2018-07-17 | | 3.0 | | | | 77FB18 |
+-----------------+-------------------+----------+-------+-------+-------+--------+
```
---
## APPEND, APPEND_MANY
#### APPEND: Combines rows from two dataframes, keeping all rows
#### APPEND_MANY: Combines rows from many dataframes, keeping all rows
```rust
let df1 = "C:\\Borivoj\\RUST\\Elusion\\API\\df1.json";
let df2 = "C:\\Borivoj\\RUST\\Elusion\\API\\df2.json";
let df3 = "C:\\Borivoj\\RUST\\Elusion\\API\\df3.json";
let df4 = "C:\\Borivoj\\RUST\\Elusion\\API\\df4.json";
let df5 = "C:\\Borivoj\\RUST\\Elusion\\API\\df5.json";
let df1 = CustomDataFrame::new(df1, "msales1").await?;
let df2 = CustomDataFrame::new(df2, "msales2").await?;
let df3 = CustomDataFrame::new(df3, "msales3").await?;
let df4 = CustomDataFrame::new(df4, "msales4").await?;
let df5 = CustomDataFrame::new(df5, "msales5").await?;
let res_df1 = df1.select(["Month", "TotalSales"]).string_functions(["'site1' AS Restaurant"]);
let result_df1 = res_df1.elusion("el1").await?;
let res_df2 = df2.select(["Month", "TotalSales"]).string_functions(["'site2' AS Restaurant"]);
let result_df2 = res_df2.elusion("el2").await?;
let res_df3 = df3.select(["Month", "TotalSales"]).string_functions(["'site3' AS Restaurant"]);
let result_df3 = res_df3.elusion("el3").await?;
let res_df4 = df4.select(["Month", "TotalSales"]).string_functions(["'site4' AS Restaurant"]);
let result_df4 = res_df4.elusion("el4").await?;
let res_df5 = df5.select(["Month", "TotalSales"]).string_functions(["'site5' AS Restaurant"]);
let resuld_df5 = res_df5.elusion("el5").await?;
//APPEND
let append_df = result_df1.append(result_df2).await?;
//APPEND_MANY
let append_many_df = result_df1.append_many([result_df2, result_df3, result_df4, resuld_df5]).await?;
```
---
## UNION, UNION ALL, EXCEPT, INTERSECT
#### UNION: Combines rows from both, removing duplicates
#### UNION ALL: Combines rows from both, keeping duplicates
#### EXCEPT: Difference of two sets (only rows in left minus those in right).
#### INTERSECT: Intersection of two sets (only rows in both).
```rust
//UNION
let df1 = sales_df.clone()
.join(
customers_df.clone(), ["s.CustomerKey = c.CustomerKey"], "INNER",
)
.select(["c.FirstName", "c.LastName"])
.string_functions([
"TRIM(c.EmailAddress) AS trimmed_email",
"CONCAT(TRIM(c.FirstName), ' ', TRIM(c.LastName)) AS full_name",
]);
let df2 = sales_df.clone()
.join(
customers_df.clone(), ["s.CustomerKey = c.CustomerKey"], "INNER",
)
.select(["c.FirstName", "c.LastName"])
.string_functions([
"TRIM(c.EmailAddress) AS trimmed_email",
"CONCAT(TRIM(c.FirstName), ' ', TRIM(c.LastName)) AS full_name",
]);
let result_df1 = df1.elusion("df1").await?;
let result_df2 = df2.elusion("df2").await?;
let union_df = result_df1.union(result_df2).await?;
let union_df_final = union_df.limit(100).elusion("union_df").await?;
union_df_final.display().await?;
//UNION ALL
let union_all_df = result_df1.union_all(result_df2).await?;
//EXCEPT
let except_df = result_df1.except(result_df2).await?;
//INTERSECT
let intersect_df = result_df1.intersect(result_df2).await?;
```
## UNION_MANY, UNION_ALL_MANY
#### UNION_MANY: Combines rows from many dataframes, removing duplicates
#### UNION_ALL_MANY: Combines rows from many dataframes, keeping duplicates
```rust
let df1 = "C:\\Borivoj\\RUST\\Elusion\\API\\df1.json";
let df2 = "C:\\Borivoj\\RUST\\Elusion\\API\\df2.json";
let df3 = "C:\\Borivoj\\RUST\\Elusion\\API\\df3.json";
let df4 = "C:\\Borivoj\\RUST\\Elusion\\API\\df4.json";
let df5 = "C:\\Borivoj\\RUST\\Elusion\\API\\df5.json";
let df1 = CustomDataFrame::new(df1, "msales").await?;
let df2 = CustomDataFrame::new(df2, "msales").await?;
let df3 = CustomDataFrame::new(df3, "msales").await?;
let df4 = CustomDataFrame::new(df4, "msales").await?;
let df5 = CustomDataFrame::new(df5, "msales").await?;
let res_df1 = df1.select(["Month", "TotalSales"]).string_functions(["'df1' AS Sitename"]);
let result_df1 = res_df1.elusion("el1").await?;
let res_df2 = df2.select(["Month", "TotalSales"]).string_functions(["'df2' AS Sitename"]);
let result_df2 = res_df2.elusion("el2").await?;
let res_df3 = df3.select(["Month", "TotalSales"]).string_functions(["'df3' AS Sitename"]);
let result_df3 = res_df3.elusion("el3").await?;
let res_df4 = df4.select(["Month", "TotalSales"]).string_functions(["'df4' AS Sitename"]);
let result_df4 = res_df4.elusion("el4").await?;
let res_df5 = df5.select(["Month", "TotalSales"]).string_functions(["'df5' AS Sitename"]);
let resuld_df5 = res_df5.elusion("el5").await?;
//UNION_MANY
let union_all_df = result_df1.union_many([result_df2, result_df3, result_df4, resuld_df5]).await?;
//UNION_ALL_MANY
let union_all_many_df = result_df1.union_all_many([result_df2, result_df3, result_df4, resuld_df5]).await?;
```
---
## PIVOT and UNPIVOT
#### Pivot and Unpivot functions are ASYNC function
#### They should be used separately from other functions: 1. directly on initial CustomDataFrame, 2. after .elusion() evaluation.
#### Future needs to be in final state so .await? must be used
```rust
// PIVOT
// directly on initial CustomDataFrame
let sales_p = "C:\\Borivoj\\RUST\\Elusion\\SalesData2022.csv";
let df_sales = CustomDataFrame::new(sales_p, "s").await?;
let pivoted = df_sales
.pivot(
["StockDate"], // Row identifiers
"TerritoryKey", // Column to pivot
"OrderQuantity", // Value to aggregate
"SUM" // Aggregation function
).await?;
let result_pivot = pivoted.elusion("pivoted_df").await?;
result_pivot.display().await?;
// after .elusion() evaluation
let sales_path = "C:\\Borivoj\\RUST\\Elusion\\sales_order_report.csv";
let sales_order_df = CustomDataFrame::new(sales_path, "sales").await?;
let scalar_df = sales_order_df
.select([
"customer_name",
"order_date",
"ABS(billable_value) AS abs_billable_value",
"ROUND(SQRT(billable_value), 2) AS SQRT_billable_value"])
.filter("billable_value > 100.0")
.order_by(["order_date"], [true])
.limit(10);
// elusion evaluation
let scalar_res = scalar_df.elusion("scalar_df").await?;
let pivoted_scalar = scalar_res
.pivot(
["customer_name"], // Row identifiers
"order_date", // Column to pivot
"abs_billable_value", // Value to aggregate
"SUM" // Aggregation function
).await?;
let pitvoted_scalar = pivoted_scalar.elusion("pivoted_df").await?;
pitvoted_scalar.display().await?;
// UNPIVOT
let unpivoted = result_pivot
.unpivot(
["StockDate"], // ID columns
["TerritoryKey_1", "TerritoryKey_2"], // Value columns to unpivot
"Territory", // New name column
"Quantity" // New value column
).await?;
let result_unpivot = unpivoted.elusion("unpivoted_df").await?;
result_unpivot.display().await?;
// example 2
let unpivot_scalar = scalar_res
.unpivot(
["customer_name", "order_date"], // Keep these as identifiers
["abs_billable_value", "sqrt_billable_value"], // Columns to unpivot
"measure_name", // Name for the measure column
"measure_value" // Name for the value column
).await?;
let result_unpivot_scalar = unpivot_scalar.elusion("unpivoted_df2").await?;
result_unpivot_scalar.display().await?;
```
---
## Statistical Functions
#### These Functions can give you quick statistical overview of your DataFrame columns and correlations
#### Currently available: display_stats(), display_null_analysis(), display_correlation_matrix()
```rust
df.display_stats(&[
"abs_billable_value",
"sqrt_billable_value",
"double_billable_value",
"percentage_billable"
]).await?;
=== Column Statistics ===
--------------------------------------------------------------------------------
Column: abs_billable_value
------------------------------------------------------------------------------
| Records | 10 | - | - |
| Non-null Records | 10 | - | - |
| Mean | 1025.71 | - | - |
| Standard Dev | 761.34 | - | - |
| Value Range | - | 67.4 | 2505.23 |
------------------------------------------------------------------------------
Column: sqrt_billable_value
------------------------------------------------------------------------------
| Records | 10 | - | - |
| Non-null Records | 10 | - | - |
| Mean | 29.48 | - | - |
| Standard Dev | 13.20 | - | - |
| Value Range | - | 8.21 | 50.05 |
------------------------------------------------------------------------------
// Display null analysis
// Keep None if you want all columns to be analized
df.display_null_analysis(None).await?;
----------------------------------------------------------------------------------------
| total_billable | 10 | 0 | 0.00% |
| order_count | 10 | 0 | 0.00% |
| customer_name | 10 | 0 | 0.00% |
| order_date | 10 | 0 | 0.00% |
| abs_billable_value | 10 | 0 | 0.00% |
----------------------------------------------------------------------------------------
// Display correlation matrix
df.display_correlation_matrix(&[
"abs_billable_value",
"sqrt_billable_value",
"double_billable_value",
"percentage_billable"
]).await?;
=== Correlation Matrix ===
-------------------------------------------------------------------------------------------
| abs_billable_va | 1.00 | 0.98 | 1.00 | 1.00 |
| sqrt_billable_v | 0.98 | 1.00 | 0.98 | 0.98 |
| double_billable | 1.00 | 0.98 | 1.00 | 1.00 |
| percentage_bill | 1.00 | 0.98 | 1.00 | 1.00 |
-------------------------------------------------------------------------------------------
```
---
## EXTRACTING VALUES: extract_value_from_df()
#### Example how you can extract values from DataFrame and use it within REST API
```rust
//create calendar dataframe
let date_calendar = CustomDataFrame::create_formatted_date_range_table(
"2025-01-01",
"2025-12-31",
"dt",
"date".to_string(),
DateFormat::HumanReadableTime,
true,
Weekday::Mon
).await?;
// take columns from Calendar
let week_range_2025 = date_calendar
.select(["DISTINCT(week_start)","week_end", "week_num"])
.order_by(["week_num"], [true])
.elusion("wr")
.await?;
// create empty dataframe
let temp_df = CustomDataFrame::empty().await?;
//populate empty dataframe with current week number
let current_week = temp_df
.datetime_functions([
"CAST(DATE_PART('week', CURRENT_DATE()) as INT) AS current_week_num",
])
.elusion("cd").await?;
// join data frames to get range for current week
let week_for_api = week_range_2025
.join(current_week,["wr.week_num == cd.current_week_num"], "INNER")
.select(["TRIM(wr.week_start) AS datefrom", "TRIM(wr.week_end) AS dateto"])
.elusion("api_week")
.await?;
// Extract Date Value from DataFrame based on column name and Row Index
let date_from = extract_value_from_df(&week_for_api, "datefrom", 0).await?;
let date_to = extract_value_from_df(&week_for_api, "dateto", 0).await?;
//PRINT results for preview
week_for_api.display().await?;
println!("Date from: {}", date_from);
println!("Date to: {}", date_to);
RESULT:
+------------------+------------------+
| 3 Mar 2025 00:00 | 9 Mar 2025 00:00 |
+------------------+------------------+
Date from: 3 Mar 2025 00:00
Date to: 9 Mar 2025 00:00
NOW WE CAN USE THESE EXTRACTED VALUES:
let post_df = ElusionApi::new();
post_df.from_api_with_dates(
"https://jsonplaceholder.typicode.com/posts", // url
&date_from, // date from
&date_to, // date to
"C:\\Borivoj\\RUST\\Elusion\\JSON\\rest_api_data.json", // path where json will be stored
).await?;
```
## EXTRACTING ROWS: extract_row_from_df()
#### Example how you can extract Row from DataFrame and use it within REST API.
```rust
//create calendar dataframe
let date_calendar = CustomDataFrame::create_formatted_date_range_table(
"2025-01-01",
"2025-12-31",
"dt",
"date".to_string(),
DateFormat::IsoDate,
true,
Weekday::Mon
).await?;
//take columns from calendar
let week_range_2025 = date_calendar
.select(["DISTINCT(week_start)","week_end", "week_num"])
.order_by(["week_num"], [true])
.elusion("wr")
.await?;
// create empty dataframe
let temp_df = CustomDataFrame::empty().await?;
//populate empty dataframe with current week number
let current_week = temp_df
.datetime_functions([
"CAST(DATE_PART('week', CURRENT_DATE()) as INT) AS current_week_num",
])
.elusion("cd").await?;
// join data frames to ge range for current week
let week_for_api = week_range_2025
.join(current_week,["wr.week_num == cd.current_week_num"], "INNER")
.select(["TRIM(wr.week_start) AS datefrom", "TRIM(wr.week_end) AS dateto"])
.elusion("api_week")
.await?;
// Extract Row Values from DataFrame based on Row Index
let row_values = extract_row_from_df(&week_for_api, 0).await?;
// PRINT row for preview
println!("DataFrame row: {:?}", row_values);
RESULT:
DataFrame row: {"datefrom": "2025-03-03", "dateto": "2025-03-09"}
NOW WE CAN USE THESE EXTRACTED ROW:
let post_df = ElusionApi::new();
post_df.from_api_with_dates(
"https://jsonplaceholder.typicode.com/posts", // url
row_values.get("datefrom").unwrap_or(&String::new()), // date from
row_values.get("dateto").unwrap_or(&String::new()), // date to
"C:\\Borivoj\\RUST\\Elusion\\JSON\\extraction_df2.json", // path where json will be stored
).await?;
```
---
# Postgres Database Connector
### Create Config, Conn and Query, and pass it to from_postgres() function.
```rust
let pg_config = PostgresConfig {
host: "localhost".to_string(),
port: 5433,
user: "borivoj".to_string(),
password: "pass123".to_string(),
database: "db_test".to_string(),
pool_size: Some(5),
};
let conn = PostgresConnection::new(pg_config).await?;
Option2: You can use map_err()
let conn = PostgresConnection::new(pg_config).await
.map_err(|e| ElusionError::Custom(format!("PostgreSQL connection error: {}", e)))?;
let query = "
SELECT
c.id,
c.name,
s.product_name,
SUM(s.quantity * s.price) as total_revenue
FROM customers c
LEFT JOIN sales s ON c.id = s.customer_id
GROUP BY c.id, c.name, s.product_name
ORDER BY total_revenue DESC
";
let sales_by_customer_df = CustomDataFrame::from_postgres(&conn, query, "postgres_df").await?;
sales_by_customer_df.display().await?;
```
# MySQL Database Connector
### Create Config, Conn and Query, and pass it to from_mysql() function.
```rust
let mysql_config = MySqlConfig {
host: "localhost".to_string(),
port: 3306,
user: "borivoj".to_string(),
password: "pass123".to_string(),
database: "brewery".to_string(),
pool_size: Some(5),
};
let conn = MySqlConnection::new(mysql_config).await?;
let mysql_query = "
WITH ranked_sales AS (
SELECT
c.color AS brew_color,
bd.beer_style,
bd.location,
SUM(bd.total_sales) AS total_sales
FROM
brewery_data bd
JOIN
colors c ON bd.Color = c.color_number
WHERE
bd.brew_date >= '2020-01-01' AND bd.brew_date <= '2020-03-01'
GROUP BY
c.color, bd.beer_style, bd.location
)
SELECT
brew_color,
beer_style,
location,
total_sales,
ROW_NUMBER() OVER (PARTITION BY brew_color ORDER BY total_sales DESC) AS ranked
FROM
ranked_sales
ORDER BY
brew_color, total_sales DESC";
let df = CustomDataFrame::from_mysql(&conn, mysql_query, "mysql_df").await?;
result.display().await?;
```
---
# AZURE Blob Storage Connector
## Storage connector available with BLOB and DFS url endpoints, along with SAS token provided
### Currently supported file types .JSON and .CSV
#### DFS endpoint is “Data Lake Storage Gen2” and behave more like a real file system. This makes reading operations more efficient—especially at large scale.
### BLOB endpoint example
```rust
let blob_url= "https://your_storage_account_name.blob.core.windows.net/your-container-name";
let sas_token = "your_sas_token";
let df = CustomDataFrame::from_azure_with_sas_token(
blob_url,
sas_token,
Some("folder-name/file-name"), // FILTERING is optional. Can be None if you want to take everything from Container
"data" // alias for registering table
).await?;
let data_df = df.select(["*"]);
let test_data = data_df.elusion("data_df").await?;
test_data.display().await?;
```
### DFS endpoint example
```rust
let dfs_url= "https://your_storage_account_name.dfs.core.windows.net/your-container-name";
let sas_token = "your_sas_token";
let df = CustomDataFrame::from_azure_with_sas_token(
dfs_url,
sas_token,
Some("folder-name/file-name"), // FILTERING is optional. Can be None if you want to take everything from Container
"data" // alias for registering table
).await?;
let data_df = df.select(["*"]);
let test_data = data_df.elusion("data_df").await?;
test_data.display().await?;
```
---
# SharePoint
### You can load single EXCEL, CSV, JSON and PARQUET files OR All files from a Folder into Single DataFrame
### To connect to SharePoint you need AzureCLI installed and to be logged in
1. Install Azure CLI
Download and install Azure CLI from: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
Microsoft users can download here: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-windows?view=azure-cli-latest&pivots=msi
- 🍎 macOS: brew install azure-cli
- 🐧 Linux:
### Ubuntu/Debian
curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash
### CentOS/RHEL/Fedora
sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc
sudo dnf install azure-cli
### Arch Linux
sudo pacman -S azure-cli
# For other distributions, visit:
# https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-linux
2. Login to Azure
Open Command Prompt and write:
```rust
"az login"
```
This will open a browser window for authentication. Sign in with your Microsoft account that has access to your SharePoint site.
3. Verify Login
```rust
"az account show"
```
This should display your account information and confirm you're logged in.
- Grant necessary SharePoint permissions:
Sites.Read.All or Sites.ReadWrite.All
Files.Read.All or Files.ReadWrite.All
#### Single file loading auto-recognize file extension (csv, excel, parquet, json):
```rust
//Example:
let df = CustomDataFrame::load_from_sharepoint(
"your-tenant-id",
"your-client-id",
"https://contoso.sharepoint.com/sites/MySite",
"Shared Documents/Data/customer_data.csv",
"combined_data" //dataframe alias
).await?;
let sales_data = df
.select(["Column_1","Column_2","Column_3"])
.elusion("my_sales_data").await?;
sales_data.display().await?;
//RUN THE PROGRAM
cargo run --features sharepoint
```
#### Reading ALL Files from a folder into single DataFrame example:
```rust
let dataframes = CustomDataFrame::load_folder_from_sharepoint(
"your-tenant-id",
"your-client-id",
"http://companyname.sharepoint.com/sites/SiteName",
"Shared Documents/MainFolder/SubFolder",
None, // None will read any file type, or you can filter by extension vec!["xlsx", "csv"]
"combined_data" //dataframe alias
).await?;
dataframes.display().await?;
//RUN THE PROGRAM
cargo run --features sharepoint
```
#### Reading ALL Files from a folder into single DataFrame with Addind filename into new column:
```rust
let dataframes = CustomDataFrame::load_folder_from_sharepoint_with_filename_column(
"your-tenant-id",
"your-client-id",
"http://companyname.sharepoint.com/sites/SiteName",
"Shared Documents/MainFolder/SubFolder",
None, // None will read any file type, or you can filter by extension vec!["xlsx", "csv"]
"combined_data" //dataframe alias
).await?;
dataframes.display().await?;
```
---
# Pipeline Scheduler
### Time is set according to UTC
#### Currently available job frequencies
```rust
"1min","2min","5min","10min","15min","30min" ,
"1h","2h","3h","4h","5h","6h","7h","8h","9h","10h","11h","12h","24h"
"2days","3days","4days","5days","6days","7days","14days","30days"
```
### PipelineScheduler Example (parsing data from Azure BLOB Stoarge, DataFrame operation and Writing to Parquet)
```rust
use elusion::prelude::*;
#[tokio::main]
async fn main() -> ElusionResult<()>{
// Create Pipeline Scheduler
let dfs_url= "https://your_storage_account_name.dfs.core.windows.net/your-container-name";
let sas_token = "your_sas_token";
// Read from Azure
let header_df = CustomDataFrame::from_azure_with_sas_token(
dfs_url,
dfs_sas_token,
Some("folder_name/"), // Optional: FILTERING can filter any part of string: file path, file name...
"head"
).await?;
// DataFrame operation
let headers_payments = header_df
.select(["Brand", "Id", "Name", "Item", "Bill", "Tax",
"ServCharge", "Percentage", "Discount", "Date"])
.agg([
"SUM(Bill) AS total_bill",
"SUM(Tax) AS total_tax",
"SUM(ServCharge) AS total_service",
"AVG(Percentage) AS avg_percentage",
"COUNT(*) AS transaction_count",
"SUM(ServCharge) / SUM(Bill) * 100 AS service_ratio"
])
.group_by(["Brand", "Date"])
.filter("Bill > 0")
.order_by(["total_bill"], [true])
let headers_data = headers_payments.elusion("headers_df").await?;
// Write output
headers_data
.write_to_parquet(
"overwrite",
"C:\\Borivoj\\RUST\\Elusion\\Scheduler\\sales_data.parquet",
None
)
.await?;
Ok(())
}).await?;
scheduler.shutdown().await?;
Ok(())
}
```
---
# JSON files
### Currently supported files can include: Fileds, Arrays, Objects.
#### Best performance with flat json ("key":"value")
#### for JSON, all field types are infered to VARCHAR/TEXT/STRING
```rust
// example json structure with key:value pairs
{
"name": "Adeel Solangi",
"language": "Sindhi",
"id": "V59OF92YF627HFY0",
"bio": "Donec lobortis eleifend condimentum. Cras dictum dolor lacinia lectus vehicula rutrum.",
"version": 6.1
}
let json_path = "C:\\Borivoj\\RUST\\Elusion\\test.json";
let json_df = CustomDataFrame::new(json_path, "test").await?;
let df = json_df.select(["*"]).limit(10);
let result = df.elusion("df").await?;
result.display().await?;
// example json structure with Fields and Arrays
[
{
"id": "1",
"name": "Form 1",
"fields": [
{"key": "first_name", "type": "text", "required": true},
{"key": "age", "type": "number", "required": false},
{"key": "email", "type": "email", "required": true}
]
},
{
"id": "2",
"name": "Form 2",
"fields": [
{"key": "address", "type": "text", "required": false},
{"key": "phone", "type": "tel", "required": true}
]
},
{
"id": "3",
"name": "Form 3",
"fields": [
{"key": "notes", "type": "textarea", "required": false},
{"key": "date", "type": "date", "required": true},
{"key": "status", "type": "select", "required": true}
]
}
]
let json_path = "C:\\Borivoj\\RUST\\Elusion\\test2.json";
let json_df = CustomDataFrame::new(json_path, "test2").await?;
```
---
# REST API
### Creating JSON files from REST API's
#### Customizable Headers, Params, Pagination, Date Ranges...
### FROM API
```rust
// example 1
let posts_df = ElusionApi::new();
posts_df
.from_api(
"https://jsonplaceholder.typicode.com/posts", // url
"C:\\Borivoj\\RUST\\Elusion\\JSON\\posts_data.json" // path where json will be stored
).await?;
// example 2
let users_df = ElusionApi::new();
users_df.from_api(
"https://jsonplaceholder.typicode.com/users",
"C:\\Borivoj\\RUST\\Elusion\\JSON\\users_data.json",
).await?;
// example 3
let ceo = ElusionApi::new();
ceo.from_api(
"https://dog.ceo/api/breeds/image/random/3",
"C:\\Borivoj\\RUST\\Elusion\\JSON\\ceo_data.json"
).await?;
```
### FROM API WITH HEADERS
```rust
// example 1
let mut headers = HashMap::new();
headers.insert("Custom-Header".to_string(), "test-value".to_string());
let bin_df = ElusionApi::new();
bin_df.from_api_with_headers(
"https://httpbin.org/headers", // url
headers, // headers
"C:\\Borivoj\\RUST\\Elusion\\JSON\\bin_data.json", // path where json will be stored
).await?;
// example 2
let mut headers = HashMap::new();
headers.insert("Accept".to_string(), "application/vnd.github.v3+json".to_string());
headers.insert("User-Agent".to_string(), "elusion-dataframe-test".to_string());
let git_hub = ElusionApi::new();
git_hub.from_api_with_headers(
"https://api.github.com/search/repositories?q=rust+language:rust&sort=stars&order=desc",
headers,
"C:\\Borivoj\\RUST\\Elusion\\JSON\\git_hub_data.json"
).await?;
// example 3
let mut headers = HashMap::new();
headers.insert("Accept".to_string(), "application/json".to_string());
headers.insert("X-Version".to_string(), "1".to_string());
let pokemon_df = ElusionApi::new();
pokemon_df.from_api_with_headers(
"https://pokeapi.co/api/v2/pokemon",
headers,
"C:\\Borivoj\\RUST\\Elusion\\JSON\\pokemon_data.json"
).await?;
```
### FROM API WITH PARAMS
```rust
// Using OpenLibrary API with params
let mut params = HashMap::new();
params.insert("q", "rust programming");
params.insert("limit", "10");
let open_lib = ElusionApi::new();
open_lib.from_api_with_params(
"https://openlibrary.org/search.json", // url
params, // params
"C:\\Borivoj\\RUST\\Elusion\\JSON\\open_lib_data.json", // path where json will be stored
).await?;
// Random User Generator API with params
let mut params = HashMap::new();
params.insert("results", "10");
params.insert("nat", "us,gb");
let generator = ElusionApi::new();
generator.from_api_with_params(
"https://randomuser.me/api",
params,
"C:\\Borivoj\\RUST\\Elusion\\JSON\\generator_data.json"
).await?;
// JSON Placeholder with multiple endpoints
let mut params = HashMap::new();
params.insert("userId", "1");
params.insert("_limit", "5");
let multi = ElusionApi::new();
multi.from_api_with_params(
"https://jsonplaceholder.typicode.com/posts",
params,
"C:\\Borivoj\\RUST\\Elusion\\JSON\\multi_data.json"
).await?;
// NASA Astronomy Picture of the Day
let mut params = HashMap::new();
params.insert("count", "5");
params.insert("thumbs", "true");
let nasa = ElusionApi::new();
nasa.from_api_with_params(
"https://api.nasa.gov/planetary/apod",
params,
"C:\\Borivoj\\RUST\\Elusion\\JSON\\nasa_pics_data.json"
).await?;
// example 5
let mut params = HashMap::new();
params.insert("brand", "elusion");
params.insert("password", "some_password");
params.insert("siteid", "993");
params.insert("Datefrom", "01 jan 2025 06:00");
params.insert("Dateto", "31 jan 2025 06:00");
params.insert("user", "borivoj");
let api = ElusionApi::new();
api.from_api_with_params(
"https://salesapi.net.co.rs/SSPAPI/api/data",
params,
"C:\\Borivoj\\RUST\\Elusion\\JSON\\sales_jan_2025.json"
).await?;
```
### FROM API WITH PARAMS AND HEADERS
```rust
let mut params = HashMap::new();
params.insert("since", "2024-01-01T00:00:00Z");
params.insert("until", "2024-01-07T23:59:59Z");
let mut headers = HashMap::new();
headers.insert("Accept".to_string(), "application/vnd.github.v3+json".to_string());
headers.insert("User-Agent".to_string(), "elusion-dataframe-test".to_string());
let commits_df = ElusionApi::new();
commits_df.from_api_with_params_and_headers(
"https://api.github.com/repos/rust-lang/rust/commits", // url
params, // params
headers, // headers
"C:\\Borivoj\\RUST\\Elusion\\JSON\\commits_data.json", // path where json will be stored
).await?;
```
### FROM API WITH DATES
```rust
// example 1
let post_df = ElusionApi::new();
post_df.from_api_with_dates(
"https://jsonplaceholder.typicode.com/posts", // url
"2024-01-01", // date from
"2024-01-07", // date to
"C:\\Borivoj\\RUST\\Elusion\\JSON\\post_data.json", // path where json will be stored
).await?;
// Example 2: COVID-19 historical data
let covid_df = ElusionApi::new();
covid_df.from_api_with_dates(
"https://disease.sh/v3/covid-19/historical/all",
"2024-01-01",
"2024-01-07",
"C:\\Borivoj\\RUST\\Elusion\\JSON\\covid_data.json"
).await?;
```
### FROM API WITH PAGINATION
```rust
// example 1
let reqres = ElusionApi::new();
reqres.from_api_with_pagination(
"https://reqres.in/api/users",
1, // page
10, // per_page
"C:\\Borivoj\\RUST\\Elusion\\JSON\\reqres_data.json"
).await?;
```
### FROM API WITH SORT
```rust
let movie_db = ElusionApi::new();
movie_db.from_api_with_sort(
"https://api.themoviedb.org/3/discover/movie", // base url
"popularity", // sort field
"desc", // order
"C:\\Borivoj\\RUST\\Elusion\\JSON\\popular_movies.json"
).await?;
```
### FROM API WITH HEADERS AND SORT
```rust
let mut headers = HashMap::new();
headers.insert("Authorization".to_string(), "Bearer YOUR_TMDB_API_KEY".to_string());
headers.insert("accept".to_string(), "application/json".to_string());
let movie_db = ElusionApi::new();
movie_db.from_api_with_headers_and_sort(
"https://api.themoviedb.org/3/discover/movie", // base url
headers, // headers
"popularity", // sort field
"desc", // order
"C:\\Borivoj\\RUST\\Elusion\\JSON\\popular_movies1.json"
).await?;
```
---
# WRITERS
## Writing to EXCEL File ***needs excel feature enabled
#### EXCEL writer can only write or overwrite, so only 2 arguments needed
#### 1. Path, 2. Optional Sheet name. (default is Sheet1)
```rust
df.write_to_excel(
"C:\\Borivoj\\RUST\\Elusion\\Excel\\sales2.xlsx", //path
Some("string_interop") // Optional sheet name. Can be None
).await?;
```
## Writing to Parquet File
#### We have 2 writing modes: **Overwrite** and **Append**
```rust
// overwrite existing file
df.write_to_parquet(
"overwrite",
"C:\\Path\\To\\Your\\test.parquet",
None // I've set WriteOptions to default for writing Parquet files, so keep it None
)
.await?;
// append to exisiting file
df.write_to_parquet(
"append",
"C:\\Path\\To\\Your\\test.parquet",
None // I've set WriteOptions to default for writing Parquet files, so keep it None
)
.await?;
```
## Writing to CSV File
#### CSV Writing options are **mandatory**
##### has_headers: TRUE is dynamically set for Overwrite mode, and FALSE for Append mode.
```rust
let custom_csv_options = CsvWriteOptions {
delimiter: b',',
escape: b'\\',
quote: b'"',
double_quote: false,
null_value: "NULL".to_string(),
};
```
#### We have 2 writing modes: Overwrite and Append
```rust
// overwrite existing file
df.write_to_csv(
"overwrite",
"C:\\Borivoj\\RUST\\Elusion\\agg_sales.csv",
custom_csv_options
)
.await?;
// append to exisiting file
df.write_to_csv(
"append",
"C:\\Borivoj\\RUST\\Elusion\\agg_sales.csv",
custom_csv_options
)
.await?;
```
## Writing to JSON File
#### JSON writer can only overwrite, so only 2 arguments needed
#### 1. Path, 2. If you want pretty-printed JSON or not (true or false)
```rust
df.write_to_json(
"C:\\Borivoj\\RUST\\Elusion\\date_table.json", // path
true // pretty-printed JSON, false for compact JSON
).await?;
```
## Writing to DELTA table / lake
#### We can write to delta in 2 modes **Overwrite** and **Append**
#### Partitioning column is OPTIONAL and if you decide to use column for partitioning, make sure that you don't need that column as you won't be able to read it back to dataframe
#### Once you decide to use partitioning column for writing your delta table, if you want to APPEND to it, append also need to have same column for partitioning
```rust
// Overwrite
df.write_to_delta_table(
"overwrite",
"C:\\Borivoj\\RUST\\Elusion\\agg_sales",
Some(vec!["order_date".into()]),
)
.await
.expect("Failed to overwrite Delta table");
// Append
df.write_to_delta_table(
"append",
"C:\\Borivoj\\RUST\\Elusion\\agg_sales",
Some(vec!["order_date".into()]),
)
.await
.expect("Failed to append to Delta table");
```
## Writing Parquet to Azure BLOB Storage
#### We have 2 writing options "overwrite" and "append"
#### Writing is set to Default, Compression: SNAPPY and Parquet 2.0
#### Threshold file size is 1GB
```rust
let df = CustomDataFrame::new(csv_data, "sales").await?;
let query = df.select(["*"]);
let data = query.elusion("df_sales").await?;
let url_to_folder = "https://your_storage_account_name.dfs.core.windows.net/your-container-name/folder/sales.parquet";
let sas_write_token = "your_sas_token"; // make sure SAS token has writing permissions
data.write_parquet_to_azure_with_sas(
"overwrite",
url_to_folder,
sas_write_token
).await?;
// append version
data.write_parquet_to_azure_with_sas(
"append",
url_to_folder,
sas_write_token
).await?;
```
## Writing JSON to Azure BLOB Storage
#### Only can create new or overwrite exisitng file
#### Threshold file size is 1GB
```rust
let df = CustomDataFrame::new(csv_data, "sales").await?;
let query = df.select(["*"]);
let data = query.elusion("df_sales").await?;
let url_to_folder = "https://your_storage_account_name.dfs.core.windows.net/your-container-name/folder/data.json";
let sas_write_token = "your_sas_token"; // make sure SAS token has writing permissions
data.write_json_to_azure_with_sas(
url_to_folder,
sas_write_token,
true // Set to true for pretty-printed JSON, false for compact JSON
).await?;
```
---
# REPORTING
### CREATING REPORT with Interactive Plots/Visuals and Tables
### Export Table data to EXCEL and CSV
#### Currently available Interactive Plots: TimeSeries, Box, Bar, Histogram, Pie, Donut, Scatter...
#### Interactive Tables can: Paginate pages, Filter, Reorder, Resize columns...
```rust
let ord = "C:\\Borivoj\\RUST\\Elusion\\sales_order_report.csv";
let sales_order_df = CustomDataFrame::new(ord, "ord").await?;
let mix_query = sales_order_df.clone()
.select([
"customer_name",
"order_date",
"ABS(billable_value) AS abs_billable_value",
"ROUND(SQRT(billable_value), 2) AS SQRT_billable_value",
"billable_value * 2 AS double_billable_value", // Multiplication
"billable_value / 100 AS percentage_billable" // Division
])
.agg([
"ROUND(AVG(ABS(billable_value)), 2) AS avg_abs_billable",
"SUM(billable_value) AS total_billable",
"MAX(ABS(billable_value)) AS max_abs_billable",
"SUM(billable_value) * 2 AS double_total_billable", // Operator-based aggregation
"SUM(billable_value) / 100 AS percentage_total_billable" // Operator-based aggregation
])
.filter("billable_value > 50.0")
.group_by_all()
.order_by_many([
("total_billable", false), // Order by total_billable descending
("max_abs_billable", true), // Then by max_abs_billable ascending
]);
let mix_res = mix_query.elusion("scalar_df").await?;
//INTERACTIVE PLOTS
// Line plot showing sales over time
let line = mix_res.plot_line(
"order_date", // - x_col: column name for x-axis (can be date or numeric)
"double_billable_value", // - y_col: column name for y-axis
true, // - show_markers: true to show points, false for line only
Some("Sales over time") // - title: optional custom title (can be None)
).await?;
// Bar plot showing aggregated values
let bars = mix_res
.plot_bar(
"customer_name", // X-axis: Customer names
"total_billable", // Y-axis: Total billable amount
Some("Customer Total Sales") // Title of the plot
).await?;
// Time series showing sales trend
let time_series = mix_res
.plot_time_series(
"order_date", // X-axis: Date column (must be Date32 type)
"total_billable", // Y-axis: Total billable amount
true, // Show markers on the line
Some("Sales Trend Over Time") // Title of the plot
).await?;
// Histogram showing distribution of abs billable values
let histogram = mix_res
.plot_histogram(
"abs_billable_value", // Data column for distribution analysis
Some("Distribution of Sale Values") // Title of the plot
).await?;
// Box plot showing abs billable value distribution
let box_plot = mix_res
.plot_box(
"abs_billable_value", // Value column for box plot
Some("customer_name"), // Optional grouping column
Some("Sales Distribution by Customer") // Title of the plot
).await?;
// Scatter plot showing relationship between original and doubled values
let scatter = mix_res
.plot_scatter(
"abs_billable_value", // X-axis: Original values
"double_billable_value", // Y-axis: Doubled values
Some(8) // Optional marker size
).await?;
// Pie chart showing sales distribution
let pie = mix_res
.plot_pie(
"customer_name", // Labels for pie segments
"total_billable", // Values for pie segments
Some("Sales Share by Customer") // Title of the plot
).await?;
// Donut chart alternative view
let donut = mix_res
.plot_donut(
"customer_name", // Labels for donut segments
"percentage_total_billable", // Values as percentages
Some("Percentage Distribution") // Title of the plot
).await?;
// Create Tables to add to report
let summary_table = mix_res.clone() //Clone for multiple usages
.select([
"customer_name",
"total_billable",
"avg_abs_billable",
"max_abs_billable",
"percentage_total_billable"
])
.order_by_many([
("total_billable", false)
])
.elusion("summary")
.await?;
let transactions_table = mix_res
.select([
"customer_name",
"order_date",
"abs_billable_value",
"double_billable_value",
"percentage_billable"
])
.order_by_many([
("order_date", false),
("abs_billable_value", false)
])
.elusion("transactions")
.await?;
// Create comprehensive dashboard with all plots
let plots = [
(&line, "Sales Line"), // Line based analysis
(&time_series, "Sales Timeline"), // Time-based analysis
(&bars, "Customer Sales"), // Customer comparison
(&histogram, "Sales Distribution"), // Value distribution
(&scatter, "Value Comparison"), // Value relationships
(&box_plot, "Customer Distributions"), // Statistical distribution
(&pie, "Sales Share"), // Share analysis
(&donut, "Percentage View"), // Percentage breakdown
];
// Add tables array
let tables = [
(&summary_table, "Customer Summary"),
(&transactions_table, "Transaction Details")
];
let layout = ReportLayout {
grid_columns: 2, // Arrange plots in 2 columns
grid_gap: 30, // 30px gap between plots
max_width: 1600, // Maximum width of 1600px
plot_height: 450, // Each plot 450px high
table_height: 500, // Height for tables
};
let table_options = TableOptions {
pagination: true, // Enable pagination for tables
page_size: 15, // Show 15 rows per page
enable_sorting: true, // Allow column sorting
enable_filtering: true, // Allow column filtering
enable_column_menu: true, // Show column menu (sort/filter/hide options)
theme: "ag-theme-alpine".to_string(), // Use Alpine theme for modern look
};
// Generate the enhanced interactive report with all plots and tables
CustomDataFrame::create_report(
Some(&plots), // plots (Optional)
Some(&tables), // tables (Optional)
"Interactive Sales Analysis Dashboard", // report_title
"C:\\Borivoj\\RUST\\Elusion\\Plots\\interactive_aggrid_dashboard.html", // filename
Some(layout), // layout_config (Optional)
Some(table_options) // table_options (Optional)
).await?;
```
### Dashboard Demo

---
### License
Elusion is distributed under the [MIT License](https://opensource.org/licenses/MIT).
However, since it builds upon [DataFusion](https://datafusion.apache.org/), which is distributed under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0), some parts of this project are subject to the terms of the Apache License 2.0.
For full details, see the [LICENSE.txt file](LICENSE.txt).
### Acknowledgments
This library leverages the power of Rust's type system and libraries like [DataFusion](https://datafusion.apache.org/)
,Appache Arrow, Tokio Cron Scheduler, Tokio... for efficient query processing. Special thanks to the open-source community for making this project possible.
## Where you can find me:
borivoj.grujicic@gmail.com