elusion 0.2.2

Elusion is DataFrame library, built on top of DataFusion SQL engine, for easy usage, with familiar DataFrame syntax like: PySpark, Pandas, Polars. Also RAW SQL usage is FULLY supported!
Documentation
elusion-0.2.2 has been yanked.

Elusion ๐Ÿฆ€ DataFrame Library for Everybody!

Elusion is a high-performance, flexible DataFrame library built on top of DataFusion SQL query engine, for managing and querying data using a DataFrame-like interface. Designed for developers who need a powerful abstraction over data transformations, Elusion simplifies complex operations such as filtering, joining, aggregating, and more with an intuitive, chainable API.

Motivation

I believe that DataFusion has great potential in Data Engineering / Data Analytics world, but I also believe that design choices for SQL and DataFrame API do not resemble popular DataFrame soultions out there, and I am here to narrow this gap, by creating easily chainable constructs for anybody to use and understand.

Key Features

๐Ÿš€ High-Performance DataFrame Operations

  • Load and process data from CSV files with ease.
  • Perform SQL-like transformations such as SELECT, WHERE, GROUP BY, and JOIN.

๐Ÿ“Š Aggregations and Analytics

  • Built-in support for functions like SUM, AVG, MIN, MAX, COUNT, and more.
  • Advanced statistical functions like CORR, STDDEV, VAR_POP, and PERCENTILE.

๐Ÿ”— Flexible Joins

  • Join tables with various join types (INNER, LEFT, RIGHT, FULL, etc.).
  • Intuitive syntax for specifying join conditions and aliases.

๐ŸชŸ Window Functions

  • Add analytical window functions like RANK, DENSE_RANK, ROW_NUMBER, and custom partition-based calculations.

๐Ÿงน Clean Query Construction

  • Construct readable and reusable SQL queries.
  • Support for Common Table Expressions (CTEs), subqueries, and set operations (UNION, INTERSECT, EXCEPT).

๐Ÿ› ๏ธ Easy-to-Use API

  • Chainable and intuitive API for building queries.

  • Readable debug output of generated SQL for verification.

  • Data Preview: Preview your data easily by displaying a subset of rows in the terminal.

  • Composable Queries: Chain transformations seamlessly to build reusable and testable workflows.


Installation

To add Elusion to your Rust project, include the following line in your Cargo.toml under [dependencies]:

elusion = "0.2.2"


Dependencies that you need in Cargo.toml to use Elusion:

[dependencies]

elusion = "0.2.2"

tokio = { version = "1.42.0", features = ["rt-multi-thread"] }




Usage examples:

MAIN function

#[tokio::main]
async fn main() -> ElusionResult<()> {
    Ok(())
}

MAIN function with small example

use elusion::prelude::*; // Import everything needed

#[tokio::main]
async fn main() -> ElusionResult<()> {
    let sales_columns = vec![
        ("OrderDate", "DATE", false),
        ("StockDate", "DATE", false),
        ("OrderNumber", "VARCHAR", false),
    ];

    let sales_data = "path\\to\\sales_data.csv";
    let df_sales = CustomDataFrame::new(sales_data, sales_columns, "sales").await?;

    let result = df_sales
        .select(vec!["OrderDate", "OrderNumber"])
        .limit(10);

    result.display().await?;

    Ok(())
}

Schema establishing

Column Name, SQL DataType and If is Null-able (true, false) needs to be provided

let sales_columns = vec![
    ("OrderDate", "DATE", false),
    ("OrderNumber", "VARCHAR", false),
    ("ProductKey", "INT", false),
    ("CustomerKey", "INT", true),
    ("OrderQuantity", "INT", false)
    ];

let customers_columns = vec![
    ("CustomerKey", "INT", true),
    ("FirstName", "VARCHAR", true),
    ("LastName", "VARCHAR", true),
    ("EmailAddress", "VARCHAR", true),
    ("AnnualIncome", "INT", true)
];

Currently supported SQL Data Types

"CHAR" => SQLDataType::Char,
"VARCHAR" => SQLDataType::Varchar,
"TEXT" | "STRING" => SQLDataType::Text,
"TINYINT" => SQLDataType::TinyInt,
"SMALLINT" => SQLDataType::SmallInt,
"INT" | "INTEGER" => SQLDataType::Int,
"BIGINT" => SQLDataType::BigInt,
"FLOAT" => SQLDataType::Float,
"DOUBLE" => SQLDataType::Double,
"DECIMAL" => SQLDataType::Decimal(20, 4), 
"NUMERIC" | "NUMBER" => SQLDataType::Decimal(20,4),
"DATE" => SQLDataType::Date,
"TIME" => SQLDataType::Time,
"TIMESTAMP" => SQLDataType::Timestamp,
"BOOLEAN" => SQLDataType::Boolean,
"BYTEA" => SQLDataType::ByteA

CSV file paths

let sales_data = "C:\\Path\\To\\Your\\FIle.csv";
let customers_data = "C:\\Path\\To\\Your\\FIle.csv";

Creating Custom data frame

3 arguments needed: Path, Schema, Table Alias

let df_sales = CustomDataFrame::new(sales_data, sales_columns, "sales").await; 
let df_customers = CustomDataFrame::new(customers_data, customers_columns, "customers").await;

RULE of thumb: ALL Column names and Dataframe alias names, will be LOWERCASE() regardles of how you write it, or how they are writen in CSV file.

ALIAS column names in SELECT() function (AS is case insensitive)

let customers_alias = df_customers
    .select(vec!["CustomerKey AS customerkey_alias", "FirstName as first_name", "LastName", "EmailAddress"]);

JOIN

let join_df = df_sales
    .join(
        df_customers,
        "sales.CustomerKey == customers.CustomerKey",
        "INNER",
    )
    .select(vec![
        "sales.OrderDate",
        "sales.OrderQuantity",
        "customers.FirstName",
        "customers.LastName",
    ])
    .limit(10);
        
    join_df.display_query(); // if you want to see generated sql query
    join_df.display().await?;

SELECT without Aggregation

let result_sales = sales_order_data.clone()
    .select(vec!["customer_name", "order_date", "billable_value"])
    .filter("billable_value > 100.0")
    .order_by(vec!["order_date"], vec![true])
    .limit(10);

    result_sales.display_query(); // if you want to see generated sql query
    result_sales.display().await?;

SELECT with Aggregation

let result_df = sales_order_data
    .aggregation(vec![
        AggregationBuilder::new("billable_value").sum().alias("total_sales"),
        AggregationBuilder::new("billable_value").avg().alias("avg_sales")
    ])
    .group_by(vec!["customer_name", "order_date"])
    .having("total_sales > 1000")
    .select(vec!["customer_name", "order_date", "total_sales", "avg_sales"]) // SELECT is used with Final columns after aggregation
    .order_by(vec!["total_sales"], vec![false])
    .limit(10);

    result_df.display_query(); // if you want to see generated sql query
    result_df.display().await?;

FILTER

 let result_sales = sales_order_data.clone()
    .select(vec!["customer_name", "order_date", "billable_value"])
    .filter("billable_value > 100.0")
    .order_by(vec!["order_date"], vec![true])
    .limit(10);

    result_sales.display_query();   
    result_sales.display().await?;

Raw SQL Querying

FULL SQL SUPPORT is available

let sales_columns = vec![
    ("OrderDate", "DATE", false),
    ("StockDate", "DATE", false),
    ("OrderNumber", "VARCHAR", false),
    ("ProductKey", "INT", false),
    ("CustomerKey", "INT", true),
    ("TerritoryKey", "INT", false),
    ("OrderLineItem", "INT", false),
    ("OrderQuantity", "INT", false)
];

let customers_columns = vec![
    ("CustomerKey", "INT", true),
    ("Prefix", "VARCHAR", true),
    ("FirstName", "VARCHAR", true),
    ("LastName", "VARCHAR", true),
    ("BirthDate", "DATE", true),
    ("MaritialStatus", "CHAR", true),
    ("Gender", "VARCHAR", true),
    ("EmailAddress", "VARCHAR", true),
    ("AnnualIncome", "INT", true),
    ("TotalChildren", "INT", true),
    ("EducationLevel", "VARCHAR", true),
    ("Occupation", "VARCHAR", true),
    ("HomeOwner","CHAR", true)
];

let products_columns = vec![
    ("ProductKey", "INT", false),
    ("ProductSubcategoryKey", "INT", false),
    ("ProductSKU", "VARCHAR", false),
    ("ProductName", "VARCHAR", false),
    ("ModelName", "VARCHAR", false),
    ("ProductDescription", "VARCHAR", false),
    ("ProductColor", "VARCHAR", false),
    ("ProductSize", "VARCHAR", false),
    ("ProductStyle", "VARCHAR", false),
    ("ProductCost", "DOUBLE", false),
    ("ProductPrice", "DOUBLE", false),
];

let sales_data = "C:\\Borivoj\\RUST\\Elusion\\SalesData2022.csv";
let customers_data = "C:\\Borivoj\\RUST\\Elusion\\Customers.csv";
let products_data = "C:\\Borivoj\\RUST\\Elusion\\Products.csv";

let df_sales = CustomDataFrame::new(sales_data, sales_columns, "sales").await; 
let df_customers = CustomDataFrame::new(customers_data, customers_columns, "customers").await; 
let df_products = CustomDataFrame::new(products_data, products_columns, "products").await; 

// Query on 1 DataFrame
let sql_one = "
    SELECT
        CAST(BirthDate AS DATE) as date_of_birth,
        CONCAT(firstname, ' ',lastname) as full_name
        FROM CUSTOMERS
    LIMIT 10;
    ";

let result_one = df_customers.raw_sql(sql_one, "customers_data", &[]).await?;
result_one.display().await?;

// Query on 2 DataFrames
let sql_two = "
    WITH agg_sales AS (
        SELECT
            CustomerKey,
            SUM(OrderQuantity) AS total_order_quantity,
            COUNT(OrderLineItem) AS total_orders
        FROM sales
        GROUP BY CustomerKey
    ),
    customer_details AS (
        SELECT
            *
        FROM customers
    )
    SELECT
        cd.*,
        asales.total_order_quantity,
        asales.total_orders
    FROM agg_sales asales
    INNER JOIN customer_details cd ON asales.CustomerKey = cd.CustomerKey
    ORDER BY asales.total_order_quantity DESC
    LIMIT 100;
";

let result_two = df_sales.raw_sql(sql_two, "top_customers", &[&df_customers]).await?;
result_two.display().await?;

// Query on 3 DataFrames (same approach is used on any number of DataFrames)
let sql_three = "
    SELECT c.CustomerKey, c.FirstName, c.LastName, p.ProductName,
            SUM(s.OrderQuantity) AS TotalQuantity
    FROM
        sales s
    INNER JOIN
        customers c
    ON
        s.CustomerKey = c.CustomerKey
    INNER JOIN
        products p
    ON
        s.ProductKey = p.ProductKey
    GROUP BY c.CustomerKey, c.FirstName, c.LastName, p.ProductName
    ORDER BY
        TotalQuantity DESC
    LIMIT 100;
    ";

    let result_three = df_sales.raw_sql(sql_three, "customer_product_sales_summary", &[&df_customers, &df_products]).await?;
    result_three.display().await?;

JSON files

Currently supported files can include: Arrays, Objects. Best usage if you can make it flat ("key":"value")

Schema and CustomDataFrame are initialized same as for CSV files

//example json structure
{
"name": "Adeel Solangi",
"language": "Sindhi",
"id": "V59OF92YF627HFY0",
"bio": "Donec lobortis eleifend condimentum. Cras dictum dolor lacinia lectus vehicula rutrum.",
"version": 6.1
}

let json_columns = vec![
    ("name", "VARCHAR", true), 
    ("language", "VARCHAR", true),          
    ("id", "VARCHAR", true),          
    ("bio", "VARCHAR", true), 
    ("version", "VARCHAR", true)
    
];
let json_path = "C:\\Borivoj\\RUST\\Elusion\\test.json";
let json_df = CustomDataFrame::new(json_path, json_columns, "test").await;

//example json structure
{
"someGUID": "e0bsg4d-d81c-4db6-8ad8-bc92cbcfsds06",
"someGUID2": "58asd1f6-c7ca-4c51-8ca0-37678csgd9c7",
"someName": "Some Name Here",
"someVersion": "Version 0232",
"emptyValue": null,
"verInd": {
    "$numberLong": "0"
    },
"elInd": {
    "$numberLong": "1"
    },
"qId": "question1",
"opId": {
    "$numberLong": "0"
    },
"label": "Some Label Here",
"labelValue": "45557",
"someGUID3": "5854ff6-c7ca-4c51-8ca0-3767sds4319c7|qId|7"
}

// For JSON files that has arrays and objects you can OPTIONALLY add .array .object, WORKS WITHOUT IT AS WELL
let json_columns = vec![
        ("someGUID", "VARCHAR", true), 
        ("someGUID2", "VARCHAR", true),          
        ("someName", "VARCHAR", true),          
        ("someVersion", "VARCHAR", true), 
        ("emptyValue", "VARCHAR", true),  
        ("verInd.$numberLong", "VARCHAR", true),
        ("elInd.$numberLong", "VARCHAR", true),
        ("qId", "VARCHAR", true),
        ("opId.$numberLong", "VARCHAR", true),
        ("label", "VARCHAR", true),
        ("labelValue", "VARCHAR", true),
        ("someGUID3", "VARCHAR", true),        
      
    ];
let json_path = "C:\\Borivoj\\RUST\\Elusion\\test2.json";
let json_df = CustomDataFrame::new(json_path, json_columns, "test2").await;

Then you can do you business as usual either with DataFrame API or SQL API

    let json_sql = "
        SELECT * FROM test LIMIT 10
    ";

    let result_json = json_df.raw_sql(json_sql, "labels", &[]).await?;
    result_json.display().await?;

Writing to Parquet File

We have 2 writing modes: Overwrite and Append

// overwrite existing file
result_df
    .write_to_parquet("overwrite","C:\\Path\\To\\Your\\test.parquet",None)
    .await
    .expect("Failed to write to Parquet");

//append to exisiting file
result_df
    .write_to_parquet("append","C:\\Path\\To\\Your\\test.parquet",None)
    .await
    .expect("Failed to append to Parquet");

Current Clause functions (some still under development)

load(...)
select(...)
group_by(...)
order_by(...)
limit(...)
filter(...)
having(...)
join(...)
window(...)
aggregation(...)
from_subquery(...)
with_cte(...)
union(...)
intersect(...)
except(...)
display(...)
display_query(...)
display_query_plan(...)

Current Aggregation functions (soon to be more)

sum(mut self)
avg(mut self)
min(mut self)
max(mut self)
stddev(mut self)
count(mut self)
count_distinct(mut self)
corr(mut self, other_column: &str)
grouping(mut self)
var_pop(mut self)
stddev_pop(mut self)
array_agg(mut self)
approx_percentile(mut self, percentile: f64)
first_value(mut self) 
nth_value(mut self, n: i64)

License

Elusion is distributed under the MIT License. However, since it builds upon DataFusion, which is distributed under the Apache License 2.0, some parts of this project are subject to the terms of the Apache License 2.0. For full details, see the LICENSE.txt file.

Acknowledgments

This library leverages the power of Rust's type system and libraries like DataFusion , Arrow for efficient query processing. Special thanks to the open-source community for making this project possible.

๐Ÿšง Disclaimer: Under Development ๐Ÿšง

This crate is currently under active development and testing. It is not considered stable or ready for production use.

We are actively working to improve the features, performance, and reliability of this library. Breaking changes might occur between versions as we continue to refine the API and functionality.

If you want to contribute or experiment with the crate, feel free to do so, but please be aware of the current limitations and evolving nature of the project.

Thank you for your understanding and support!

Where you can find me:

LindkedIn - LinkedIn YouTube channel - YouTube Udemy Instructor - Udemy