Elliptic integrals for Rust
Ellip is a pure-Rust implementation of elliptic integrals. Ellip also provides less common functions like Bulirsch's cel
and el
. Some applications of the elliptic integrals include computing the lengths of plane curves, magnetism, astrophysics, and string theory.
Quick Start
Start by installing Ellip.
>> cargo add ellip
Let's compute the circumference of an ellipse.
use *;
let ans = ellipse_length.unwrap;
assert_close;
Learn more at doc.rs.
Features
- Legendre's complete integrals
ellipk
: Complete elliptic integral of the first kind (K).ellipe
: Complete elliptic integral of the second kind (E).ellippi
: Complete elliptic integral of the third kind (Π).ellipd
: Complete elliptic integral of Legendre's type (D).
- Legendre's incomplete integrals
ellipf
: Incomplete elliptic integral of the first kind (F).ellipeinc
: Incomplete elliptic integral of the second kind (E).ellippiinc
: Incomplete elliptic integral of the third kind (Π).ellipdinc
: Incomplete elliptic integral of Legendre's type (D).
- Bulirsch's integrals
cel
: General complete elliptic integral in Bulirsch's form.cel1
: Complete elliptic integral of the first kind in Bulirsch's form.cel2
: Complete elliptic integral of the second kind in Bulirsch's form.el1
: Incomplete elliptic integral of the first kind in Bulirsch's form.el2
: Incomplete elliptic integral of the second kind in Bulirsch's form.el3
: Incomplete elliptic integral of the third kind in Bulirsch's form.
- Carlson's symmetric integrals
elliprf
: Symmetric elliptic integral of the first kind (RF).elliprg
: Symmetric elliptic integral of the second kind (RG).elliprj
: Symmetric elliptic integral of the third kind (RJ).elliprc
: Degenerate elliptic integral of RF (RC).elliprd
: Degenerate elliptic integral of the third kind (RD).
- Miscellaneous functions
jacobi_zeta
: Jacobi Zeta function (Z).heuman_lambda
: Heuman Lambda function (Λ0).
Testing
In the unit tests, the functions are tested against the Boost Math and Wolfram test data. Since Ellip accepts the argument m
(parameter) instead of k
(modulus) to allow larger domain support, the full accuracy report uses exclusively the Wolfram data. The full accuracy report, test data, and test generation scripts can be found here. The performance benchmark is presented to provide comparison between functions in Ellip. Comparing performance with other libraries is non-trivial, since they accept different domains.
Benchmark on AMD Ryzen 5 4600H with Radeon Graphics running x86_64-unknown-linux-gnu rustc 1.89.0 using ellip v0.4.0 at f64
precision (ε≈2.22e-16).
Legendre's Elliptic Integrals
Function | Median Error (ε) | Max Error (ε) | Mean Performance |
---|---|---|---|
ellipk | 0.00 | 108.14 | 14.6 ns |
ellipe | 0.00 | 3.00 | 13.2 ns |
ellipf | 0.66 | 7.47 | 103.3 ns |
ellipeinc | 0.70 | 24.66 | 164.6 ns |
ellippi | 0.53 | 36.35 | 167.0 ns |
ellippiinc | 0.78 | 1.04e3 | 277.6 ns |
ellippiinc_bulirsch | 0.83 | 1.04e3 | 223.6 ns |
ellipd | 0.60 | 2.64 | 29.9 ns |
ellipdinc | 1.00 | 8.38 | 103.1 ns |
Bulirsch's Elliptic Integrals
Function | Median Error (ε) | Max Error (ε) | Mean Performance |
---|---|---|---|
cel | 0.70 | 38.34 | 34.0 ns |
cel1 | 0.00 | 8.68 | 11.4 ns |
cel2 | 0.61 | 3.97 | 22.8 ns |
el1 | 0.00 | 1.60 | 37.8 ns |
el2 | 0.70 | 79.92 | 56.7 ns |
el3 | 0.70 | 46.32 | 117.5 ns |
Carlson's Symmetric Integrals
Function | Median Error (ε) | Max Error (ε) | Mean Performance |
---|---|---|---|
elliprf | 0.00 | 1.75 | 45.6 ns |
elliprg | 0.00 | 2.45 | 98.8 ns |
elliprj | 0.67 | 5.42e7 | 165.3 ns |
elliprc | 0.00 | 2.82 | 22.8 ns |
elliprd | 0.62 | 6.49 | 74.8 ns |
Miscellaneous Functions
Function | Median Error (ε) | Max Error (ε) | Mean Performance |
---|---|---|---|
jacobi_zeta | 1.42 | 9.83 | 242.4 ns |
heuman_lambda | 0.62 | 8.89 | 372.7 ns |
Learn more at docs.rs.