elgato_streamdeck/
asynchronous.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//! Code from this module is using [block_in_place](tokio::task::block_in_place),
//! and so they cannot be used in [current_thread](tokio::runtime::Builder::new_current_thread) runtimes

use std::iter::zip;
use std::sync::Arc;
use std::time::Duration;

use hidapi::{HidApi, HidResult};
use image::DynamicImage;
use tokio::sync::Mutex;
use tokio::task::block_in_place;
use tokio::time::sleep;

use crate::{DeviceState, DeviceStateUpdate, Kind, list_devices, StreamDeck, StreamDeckError, StreamDeckInput};
use crate::images::{convert_image_async, ImageRect};

/// Actually refreshes the device list, can be safely ran inside [multi_thread](tokio::runtime::Builder::new_multi_thread) runtime
pub fn refresh_device_list_async(hidapi: &mut HidApi) -> HidResult<()> {
    block_in_place(move || hidapi.refresh_devices())
}

/// Returns a list of devices as (Kind, Serial Number) that could be found using HidApi,
/// can be safely ran inside [multi_thread](tokio::runtime::Builder::new_multi_thread) runtime
///
/// **WARNING:** To refresh the list, use [refresh_device_list]
pub fn list_devices_async(hidapi: &HidApi) -> Vec<(Kind, String)> {
    block_in_place(move || list_devices(&hidapi))
}

/// Stream Deck interface suitable to be used in async, uses [block_in_place](block_in_place)
/// so this wrapper cannot be used in [current_thread](tokio::runtime::Builder::new_current_thread) runtimes
#[derive(Clone)]
pub struct AsyncStreamDeck {
    kind: Kind,
    device: Arc<Mutex<StreamDeck>>,
}

/// Static functions of the struct
impl AsyncStreamDeck {
    /// Attempts to connect to the device, can be safely ran inside [multi_thread](tokio::runtime::Builder::new_multi_thread) runtime
    pub fn connect(hidapi: &HidApi, kind: Kind, serial: &str) -> Result<AsyncStreamDeck, StreamDeckError> {
        let device = block_in_place(move || StreamDeck::connect(hidapi, kind, serial))?;

        Ok(AsyncStreamDeck {
            kind,
            device: Arc::new(Mutex::new(device)),
        })
    }
}

/// Instance methods of the struct
impl AsyncStreamDeck {
    /// Returns kind of the Stream Deck
    pub fn kind(&self) -> Kind {
        self.kind
    }

    /// Returns manufacturer string of the device
    pub async fn manufacturer(&self) -> Result<String, StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.manufacturer())?)
    }

    /// Returns product string of the device
    pub async fn product(&self) -> Result<String, StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.product())?)
    }

    /// Returns serial number of the device
    pub async fn serial_number(&self) -> Result<String, StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.serial_number())?)
    }

    /// Returns firmware version of the StreamDeck
    pub async fn firmware_version(&self) -> Result<String, StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.firmware_version())?)
    }

    /// Reads button states, awaits until there's data.
    /// Poll rate determines how often button state gets checked
    pub async fn read_input(&self, poll_rate: f32) -> Result<StreamDeckInput, StreamDeckError> {
        loop {
            let device = self.device.lock().await;
            let data = block_in_place(move || device.read_input(None))?;

            if !data.is_empty() {
                return Ok(data);
            }

            sleep(Duration::from_secs_f32(1.0 / poll_rate)).await;
        }
    }

    /// Resets the device
    pub async fn reset(&self) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.reset())?)
    }

    /// Sets brightness of the device, value range is 0 - 100
    pub async fn set_brightness(&self, percent: u8) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.set_brightness(percent))?)
    }

    /// Writes image data to Stream Deck device, changes must be flushed with `.flush()` before
    /// they will appear on the device!
    pub async fn write_image(&self, key: u8, image_data: &[u8]) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.write_image(key, image_data))?)
    }

    /// Writes image data to Stream Deck device's lcd strip/screen as region.
    /// Only Stream Deck Plus supports writing LCD regions, for Stream Deck Neo use write_lcd_fill
    pub async fn write_lcd(&self, x: u16, y: u16, rect: &ImageRect) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.write_lcd(x, y, rect))?)
    }

    /// Writes image data to Stream Deck device's lcd strip/screen as full fill
    ///
    /// You can convert your images into proper image_data like this:
    /// ```
    /// use elgato_streamdeck::images::{convert_image_with_format_async};
    /// let image_data = convert_image_with_format_async(device.kind().lcd_image_format(), image).await.unwrap();
    /// device.write_lcd_fill(&image_data).await;
    /// ```
    pub async fn write_lcd_fill(&self, image_data: &[u8]) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.write_lcd_fill(image_data))?)
    }

    /// Sets button's image to blank, changes must be flushed with `.flush()` before
    /// they will appear on the device!
    pub async fn clear_button_image(&self, key: u8) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.clear_button_image(key))?)
    }

    /// Sets blank images to every button, changes must be flushed with `.flush()` before
    /// they will appear on the device!
    pub async fn clear_all_button_images(&self) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.clear_all_button_images())?)
    }

    /// Sets specified button's image, changes must be flushed with `.flush()` before
    /// they will appear on the device!
    pub async fn set_button_image(&self, key: u8, image: DynamicImage) -> Result<(), StreamDeckError> {
        let image = convert_image_async(self.kind, image)?;

        let device = self.device.lock().await;
        Ok(block_in_place(move || device.write_image(key, &image))?)
    }

    /// Set logo image
    pub async fn set_logo_image(&self, image: DynamicImage) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.set_logo_image(image))?)
    }

    /// Sets specified touch point's led strip color
    pub async fn set_touchpoint_color(&self, point: u8, red: u8, green: u8, blue: u8) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.set_touchpoint_color(point, red, green, blue))?)
    }

    /// Sleeps the device
    pub async fn sleep(&self) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.sleep())?)
    }

    /// Make periodic events to the device, to keep it alive
    pub async fn keep_alive(&self) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.keep_alive())?)
    }

    /// Shutdown the device
    pub async fn shutdown(&self) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.shutdown())?)
    }

    /// Flushes the button's image to the device
    pub async fn flush(&self) -> Result<(), StreamDeckError> {
        let device = self.device.lock().await;
        Ok(block_in_place(move || device.flush())?)
    }

    /// Returns button state reader for this device
    pub fn get_reader(&self) -> Arc<AsyncDeviceStateReader> {
        Arc::new(AsyncDeviceStateReader {
            device: self.clone(),
            states: Mutex::new(DeviceState {
                buttons: vec![false; self.kind.key_count() as usize + self.kind.touchpoint_count() as usize],
                encoders: vec![false; self.kind.encoder_count() as usize],
            }),
        })
    }
}

/// Button reader that keeps state of the Stream Deck and returns events instead of full states
pub struct AsyncDeviceStateReader {
    device: AsyncStreamDeck,
    states: Mutex<DeviceState>,
}

impl AsyncDeviceStateReader {
    /// Reads states and returns updates
    pub async fn read(&self, poll_rate: f32) -> Result<Vec<DeviceStateUpdate>, StreamDeckError> {
        let input = self.device.read_input(poll_rate).await?;
        let mut my_states = self.states.lock().await;

        let mut updates = vec![];

        match input {
            StreamDeckInput::ButtonStateChange(buttons) => {
                for (index, (their, mine)) in zip(buttons.iter(), my_states.buttons.iter()).enumerate() {
                    match self.device.kind {
                        Kind::Akp153 | Kind::Akp153E | Kind::Akp815 | Kind::MiraBoxHSV293S => {
                            if *their {
                                updates.push(DeviceStateUpdate::ButtonDown(index as u8));
                                updates.push(DeviceStateUpdate::ButtonUp(index as u8));
                            }
                        }
                        _ => {
                            if *their != *mine {
                                if index < self.device.kind.key_count() as usize {
                                    if *their {
                                        updates.push(DeviceStateUpdate::ButtonDown(index as u8));
                                    } else {
                                        updates.push(DeviceStateUpdate::ButtonUp(index as u8));
                                    }
                                } else {
                                    if *their {
                                        updates.push(DeviceStateUpdate::TouchPointDown(index as u8 - self.device.kind.key_count()));
                                    } else {
                                        updates.push(DeviceStateUpdate::TouchPointUp(index as u8 - self.device.kind.key_count()));
                                    }
                                }
                            }
                        }
                    }
                }

                my_states.buttons = buttons;
            }

            StreamDeckInput::EncoderStateChange(encoders) => {
                for (index, (their, mine)) in zip(encoders.iter(), my_states.encoders.iter()).enumerate() {
                    if *their != *mine {
                        if *their {
                            updates.push(DeviceStateUpdate::EncoderDown(index as u8));
                        } else {
                            updates.push(DeviceStateUpdate::EncoderUp(index as u8));
                        }
                    }
                }

                my_states.encoders = encoders;
            }

            StreamDeckInput::EncoderTwist(twist) => {
                for (index, change) in twist.iter().enumerate() {
                    if *change != 0 {
                        updates.push(DeviceStateUpdate::EncoderTwist(index as u8, *change));
                    }
                }
            }

            StreamDeckInput::TouchScreenPress(x, y) => {
                updates.push(DeviceStateUpdate::TouchScreenPress(x, y));
            }

            StreamDeckInput::TouchScreenLongPress(x, y) => {
                updates.push(DeviceStateUpdate::TouchScreenLongPress(x, y));
            }

            StreamDeckInput::TouchScreenSwipe(s, e) => {
                updates.push(DeviceStateUpdate::TouchScreenSwipe(s, e));
            }

            _ => {}
        }

        drop(my_states);

        Ok(updates)
    }
}