1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
//Import source modules
use crate::building::Building;
use crate::floors::Floors;
use crate::people::People;
//Implement standard/imported modules
use rand::{Rng, SeedableRng};
use rand::rngs::StdRng;
use rand::distributions::{Distribution, Uniform, Bernoulli};
/// # `ElevatorController` trait
///
/// An `ElevatorController` implementation controls the elevators of a building.
pub trait ElevatorController {
fn get_building(&mut self) -> &Building;
fn get_building_mut(&mut self) -> &mut Building;
fn clone_building(&mut self) -> Building;
fn can_be_upgraded(&self) -> bool;
fn upgrade(&mut self, incrementation: f64);
fn update_elevators(&mut self);
}
/// # `RandomController` struct
///
/// A `RandomController` implements the `ElevatorController` trait. It randomly
/// generates destination floors for each of a building's elevators once the elevator
/// reaches its destination floor.
pub struct RandomController {
pub building: Building,
num_floors: usize,
floors_to: Vec<Option<usize>>,
dst_to: Uniform<usize>,
p_rational: f64,
dst_rational: Bernoulli,
upgradable: bool,
rng: StdRng
}
//Implement the RandomController interface
impl RandomController {
/// Initialize a new RandomController given a `Building`, an `StdRng` (from
/// the rand library), and an `f64` representing the probability that the
/// RandomController behaves rationally.
///
/// ## Example
///
/// ```
/// let my_rng = rand::thread_rng();
/// let my_building: Building = Building::from(
/// 4_usize,
/// 2_usize,
/// 0.5_f64,
/// 5.0_f64,
/// 2.5_f64,
/// 0.5_f64
/// );
/// let my_controller: RandomController = RandomController::from(
/// my_building,
/// my_rng,
/// 0.5_f64
/// );
/// ```
pub fn from(building: Building, rng: StdRng, p_rational: f64) -> RandomController {
//Get the number of floors and elevators in the building
let num_floors: usize = building.floors.len();
let num_elevators: usize = building.elevators.len();
//Initialize the destination floors for the elevators
let floors_to: Vec<Option<usize>> = {
let mut tmp_floors_to: Vec<Option<usize>> = Vec::new();
for _ in 0..num_elevators {
tmp_floors_to.push(None);
}
tmp_floors_to
};
//Initialize the distribution for randomizing dest floors
let dst_to: Uniform<usize> = Uniform::new(0_usize, num_floors);
//Initialize the controller
RandomController {
building: building,
num_floors: num_floors,
floors_to: floors_to,
dst_to: dst_to,
p_rational: p_rational,
dst_rational: Bernoulli::new(p_rational).unwrap(),
upgradable: true,
rng: rng
}
}
/// Initialize a new RandomController from just a building. The rng is
/// created on the fly, and the rational probability is defaulted to 0.
///
/// ## Example
///
/// ```
/// let my_building: Building = Building::from(
/// 4_usize,
/// 2_usize,
/// 0.5_f64,
/// 5.0_f64,
/// 2.5_f64,
/// 0.5_f64
/// );
/// let my_controller: RandomController = RandomController::from(my_building);
/// ```
pub fn from_building(building: Building) -> RandomController {
//Initialize default values for the additional properties for this controller
let rng = StdRng::from_seed(rand::thread_rng().gen());
let p_rational = 0.0_f64;
//Initialize and return the RandomController
RandomController::from(building, rng, p_rational)
}
/// Set the destination floors of the elevators randomly according to
/// random or rational logic, depending on the p_rational
pub fn update_floors_to(&mut self) {
//If the number of elevators in the building is greater than the number
//of destination floors in the controller, then add new destination
//floors
while self.building.elevators.len() > self.floors_to.len() {
self.floors_to.push(None);
}
//If the numer of floors in the building is greater than the number of
//floors tracked by the controller, then update the number of floors
//tracked by the controller and re-instantiate the dest distribution
if self.building.floors.len() != self.num_floors {
self.num_floors = self.building.floors.len();
self.dst_to = Uniform::new(0, self.num_floors);
}
//Loop through the elevators in the building
for (i, elevator) in self.building.elevators.iter().enumerate() {
//If the destination floor for the elevator is None, then update it
match self.floors_to[i] {
Some(_) => {},
None => {
if self.dst_rational.sample(&mut self.rng) {
if elevator.stopped {
//Find the nearest destination floor among people on the elevator
let (nearest_dest_floor, min_dest_floor_dist): (usize, usize) = elevator.get_nearest_dest_floor();
//If the nearest dest floor is identified, then set as the dest floor
if min_dest_floor_dist != 0_usize {
self.floors_to[i] = Some(nearest_dest_floor);
continue;
}
//Find the nearest waiting floor among people throughout the building
let (nearest_wait_floor, min_wait_floor_dist): (usize, usize) = self.building.get_nearest_wait_floor(elevator.floor_on);
//If the nearest wait floor is identified, then set as the dest floor
if min_wait_floor_dist != 0_usize {
self.floors_to[i] = Some(nearest_wait_floor);
continue;
}
}
} else {
self.floors_to[i] = Some(self.dst_to.sample(&mut self.rng));
continue;
}
self.floors_to[i] = Some(elevator.floor_on);
}
}
}
}
/// If any elevators are at their destination floor, then set that floor
/// to None so that it can be re-randomized next time step.
pub fn clear_floors_to(&mut self) {
//Loop through the elevators in the building
for (i, elevator) in self.building.elevators.iter().enumerate() {
let dest_floor = self.floors_to[i].unwrap();
if dest_floor == elevator.floor_on {
self.floors_to[i] = None;
}
}
}
}
//Implement the ElevatorController trait for the RandomController
impl ElevatorController for RandomController {
/// Immutably borrow the building belonging to the controller
fn get_building(&mut self) -> &Building {
&self.building
}
/// Mutably borrow the building belonging to the controller
fn get_building_mut(&mut self) -> &mut Building {
&mut self.building
}
/// Clone the building belonging to the controller. Generally used when
/// swapping controllers.
fn clone_building(&mut self) -> Building {
self.building.clone()
}
/// Return a boolean signifying whether the controller can be upgraded or
/// not.
fn can_be_upgraded(&self) -> bool {
//If the controller is 100% rational, then no further upgrades are
//possible
if self.p_rational >= 1.0_f64 {
return false;
}
//Otherwise, the elevator controller can be upgraded
self.upgradable
}
/// Upgrade the controller given an incrementation float
fn upgrade(&mut self, incrementation: f64) {
//Add the current rationality probability to the incrementation and
//check to see if it exceeds 1, if so then ceiling it at 1.0
let mut new_p_rational: f64 = self.p_rational + incrementation;
if new_p_rational > 1.0_f64 {
new_p_rational = 1.0_f64;
}
//Update the rationality probability and distribution of the controller
self.p_rational = new_p_rational;
self.dst_rational = Bernoulli::new(self.p_rational).unwrap();
}
/// If the destination floor is None, then randomize a new destination floor.
/// If the elevator is not on its destination floor then move toward it. If the
/// elevator is on its destination floor then stop it and set its destination
/// floor to None for randomization during the next step.
fn update_elevators(&mut self) {
//Update the destination floors
self.update_floors_to();
//Loop through the dest floors and update the building's elevators accordingly
for (i, floor_to) in self.floors_to.iter().enumerate() {
//Unwrap the destination floor
let dest_floor: usize = floor_to.unwrap();
//Update the elevator's direction based on its destination floor
self.building.elevators[i].update_direction(dest_floor);
//Update the elevator
let _new_floor_index = self.building.elevators[i].update_floor();
}
//Clear the destination floors if any elevators arrived at their destinations
self.clear_floors_to();
}
}
/// # `NearestController` struct
///
/// A `NearestController` implements the `ElevatorController` trait. It decides each
/// elevator's direction based on the nearest destination floor among people on the
/// elevator, then the nearest floor with people waiting.
pub struct NearestController {
pub building: Building,
upgradable: bool
}
//Implement the NearestController interface
impl NearestController {
/// Initialize a new NearestController given a `Building`.
///
/// ## Example
///
/// ```
/// let my_building: Building = Building::from(
/// 4_usize,
/// 2_usize,
/// 0.5_f64,
/// 5.0_f64,
/// 2.5_f64,
/// 0.5_f64
/// );
/// let my_controller: NearestController = NearestController::from(my_building);
/// ```
pub fn from(building: Building) -> NearestController {
//Initialize the controller
NearestController {
building: building,
upgradable: false
}
}
/// Initialize a new NearestController from just a building
///
/// ## Example
///
/// ```
/// let my_building: Building = Building::from(
/// 4_usize,
/// 2_usize,
/// 0.5_f64,
/// 5.0_f64,
/// 2.5_f64,
/// 0.5_f64
/// );
/// let my_controller: NearestController = NearestController::from(my_building);
/// ```
pub fn from_building(building: Building) -> NearestController {
//Initialize the controller
NearestController {
building: building,
upgradable: false
}
}
}
//Implement the ElevatorController trait for the NearestController
impl ElevatorController for NearestController {
/// Get the building belonging to the controller
fn get_building(&mut self) -> &Building {
&self.building
}
/// Mutably borrow the building belonging to the controller
fn get_building_mut(&mut self) -> &mut Building {
&mut self.building
}
/// Clone the building belonging to the controller. Generally used when
/// swapping controllers.
fn clone_building(&mut self) -> Building {
self.building.clone()
}
/// Return a boolean signifying whether the controller can be upgraded or
/// not. Always returns false, since the NearestController cannot be
/// upgraded.
fn can_be_upgraded(&self) -> bool {
self.upgradable
}
/// Upgrade the controller given an incrementation float. Does nothing for
/// the NearestController since it cannot be upgraded.
fn upgrade(&mut self, _incrementation: f64) {}
/// Decide each elevator's direction based on the nearest destination floor among
/// people on the elevator, then the nearest floor with people waiting.
fn update_elevators(&mut self) {
//Initialize a vector of decisions for the elevators
let mut elevator_decisions: Vec<usize> = Vec::new();
//Loop through the elevators in the building
for elevator in self.building.elevators.iter() {
//If stopped, check where to go next
if elevator.stopped {
//Find the nearest destination floor among people on the elevator
let (nearest_dest_floor, min_dest_floor_dist): (usize, usize) = elevator.get_nearest_dest_floor();
//If the nearest dest floor is identified, then update the elevator
if min_dest_floor_dist != 0_usize {
elevator_decisions.push(nearest_dest_floor);
continue;
}
//Find the nearest waiting floor among people throughout the building
let (nearest_wait_floor, min_wait_floor_dist): (usize, usize) = self.building.get_nearest_wait_floor(elevator.floor_on);
//If the nearest wait floor is identified, then update the elevator
if min_wait_floor_dist != 0_usize {
elevator_decisions.push(nearest_wait_floor);
continue;
}
} else {
//If moving down and on the bottom floor, then stop
if !elevator.moving_up && elevator.floor_on == 0_usize {
elevator_decisions.push(elevator.floor_on);
continue;
}
//If moving up and on the top floor, then stop
if elevator.moving_up && elevator.floor_on == (self.building.floors.len() - 1_usize) {
elevator_decisions.push(elevator.floor_on);
continue;
}
//If there are people waiting on the elevator for the current floor, then stop
if elevator.are_people_going_to_floor(elevator.floor_on) {
elevator_decisions.push(elevator.floor_on);
continue;
}
//If there are people waiting on the current floor, then stop
if self.building.are_people_waiting_on_floor(elevator.floor_on) {
elevator_decisions.push(elevator.floor_on);
continue;
}
}
//If we make it this far without returning, then return the current state
elevator_decisions.push(elevator.floor_on);
}
//Loop through the elevator decisions and update the elevators
for (i, decision) in elevator_decisions.iter().enumerate() {
//Update the elevator direction
self.building.elevators[i].update_direction(*decision);
//Update the elevator
let _new_floor_index = self.building.elevators[i].update_floor();
}
}
}