1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//Import source modules
use crate::building::Building;
use crate::floors::Floors;
use crate::people::People;

//Implement standard/imported modules
use rand::rngs::StdRng;
use rand::distributions::{Distribution, Uniform};

/// # `ElevatorController` trait
///
/// An `ElevatorController` implementation controls the elevators of a building.
pub trait ElevatorController {
    fn get_building(&mut self) -> &Building;

    fn update_elevators(&mut self);
}

/// # `RandomController` struct
///
/// A `RandomController` implements the `ElevatorController` trait.  It randomly
/// generates destination floors for each of a building's elevators once the elevator
/// reaches its destination floor.
 pub struct RandomController {
    pub building: Building,
    floors_to: Vec<Option<usize>>,
    dst_to: Uniform<usize>,
    rng: StdRng
}

//Implement the RandomController interface
impl RandomController {
    /// Initialize a new RandomController given a `Building` and a `StdRng` (from
    /// the rand library).
    ///
    /// ## Example
    ///
    /// ```
    /// let my_rng = rand::thread_rng();
    /// let my_building: Building = Building::from(
    ///     4_usize,
    ///     2_usize,
    ///     0.5_f64,
    ///     5.0_f64,
    ///     2.5_f64,
    ///     0.5_f64
    /// );
    /// let my_controller: RandomController = RandomController::from(
    ///     my_building,
    ///     my_rng
    /// );
    /// ```
    pub fn from(building: Building, rng: StdRng) -> RandomController {
        //Get the number of floors and elevators in the building
        let num_floors: usize = building.floors.len();
        let num_elevators: usize = building.elevators.len();

        //Initialize the destination floors for the elevators
        let floors_to: Vec<Option<usize>> = {
            let mut tmp_floors_to: Vec<Option<usize>> = Vec::new();
            for _ in 0..num_elevators {
                tmp_floors_to.push(None);
            }
            tmp_floors_to
        };

        //Initialize the distribution for randomizing dest floors
        let dst_to: Uniform<usize> = Uniform::new(0_usize, num_floors);

        //Initialize the controller
        RandomController {
            building: building,
            floors_to: floors_to,
            dst_to: dst_to,
            rng: rng
        }
    }
}

//Implement the ElevatorController trait for the RandomController
impl ElevatorController for RandomController {
    /// Get the building belonging to the controller
    fn get_building(&mut self) -> &Building {
        &self.building
    }

    /// If the destination floor is None, then randomize a new destination floor.
    /// If the elevator is not on its destination floor then move toward it.  If the
    /// elevator is on its destination floor then stop it and set its destination
    /// floor to None for randomization during the next step.
    fn update_elevators(&mut self) {
        //Loop through the elevators in the building
        for (i, elevator) in self.building.elevators.iter_mut().enumerate() {
            //If the destination floor for the elevator is None, then randomize it
            let floor_to: usize = match self.floors_to[i] {
                Some(x) => x as usize,
                None => self.dst_to.sample(&mut self.rng)
            };

            //If the elevator is not on its destination floor, then move toward it
            if floor_to > elevator.floor_on {
                elevator.stopped = false;
                elevator.moving_up = true;
            } else if floor_to < elevator.floor_on {
                elevator.stopped = false;
                elevator.moving_up = false;
            //If the elevator is on its destination floor, then stop and set is destination floor to None
            } else {
                elevator.stopped = true;
                self.floors_to[i] = None;
            }

            //Update the elevator
            let _new_floor_index = elevator.update_floor();
        }
    }
}

/// # `NearestController` struct
///
/// A `NearestController` implements the `ElevatorController` trait.  It decides each
/// elevator's direction based on the nearest destination floor among people on the
/// elevator, then the nearest floor with people waiting.
pub struct NearestController {
    pub building: Building
}

//Implement the NearestController interface
impl NearestController {
    /// Initialize a new NearestController given a `Building`.
    ///
    /// ## Example
    ///
    /// ```
    /// let my_building: Building = Building::from(
    ///     4_usize,
    ///     2_usize,
    ///     0.5_f64,
    ///     5.0_f64,
    ///     2.5_f64,
    ///     0.5_f64
    /// );
    /// let my_controller: NearestController = NearestController::from(my_building);
    /// ```
    pub fn from(building: Building) -> NearestController {
        //Initialize the controller
        NearestController {
            building: building
        }
    }
}

//Implement the ElevatorController trait for the NearestController
impl ElevatorController for NearestController {
    /// Get the building belonging to the controller
    fn get_building(&mut self) -> &Building {
        &self.building
    }

    /// Decide each elevator's direction based on the nearest destination floor among
    /// people on the elevator, then the nearest floor with people waiting.
    fn update_elevators(&mut self) {
        //Initialize a vector of decisions for the elevators
        let mut elevator_decisions: Vec<i32> = Vec::new();

        //Loop through the elevators in the building
        for elevator in self.building.elevators.iter() {
            //If stopped, check where to go next
            if elevator.stopped {
                //Find the nearest destination floor among people on the elevator
                let (nearest_dest_floor, min_dest_floor_dist): (usize, usize) = elevator.get_nearest_dest_floor();

                //If the nearest dest floor is identified, then update the elevator
                if min_dest_floor_dist != 0_usize {
                    //Unstop the elevator and move toward the nearest dest floor
                    if nearest_dest_floor > elevator.floor_on {
                        elevator_decisions.push(1_i32);
                        continue;
                    } else {
                        elevator_decisions.push(-1_i32);
                        continue;
                    }
                }

                //Find the nearest waiting floor among people throughout the building
                let (nearest_wait_floor, min_wait_floor_dist): (usize, usize) = self.building.get_nearest_wait_floor(elevator.floor_on);

                //If the nearest wait floor is identified, then update the elevator
                if min_wait_floor_dist != 0_usize {
                    //Unstop the elevator and move toward the nearest dest floor
                    if nearest_wait_floor > elevator.floor_on {
                        elevator_decisions.push(1_i32);
                        continue;
                    } else {
                        elevator_decisions.push(-1_i32);
                        continue;
                    }
                }
            } else {
                //If moving down and on the bottom floor, then stop
                if !elevator.moving_up && elevator.floor_on == 0_usize {
                    elevator_decisions.push(0_i32);
                    continue;
                }

                //If moving up and on the top floor, then stop
                if elevator.moving_up && elevator.floor_on == (self.building.floors.len() - 1_usize) {
                    elevator_decisions.push(0_i32);
                    continue;
                }

                //If there are people waiting on the current floor, then stop
                if self.building.are_people_waiting_on_floor(elevator.floor_on) {
                    elevator_decisions.push(0_i32);
                    continue;
                }

                //If there are people waiting on the elevator for the current floor, then stop
                if elevator.are_people_going_to_floor(elevator.floor_on) {
                    elevator_decisions.push(0_i32);
                    continue;
                }
            }

            //If we make it this far without returning, then return the current state
            if elevator.stopped {
                elevator_decisions.push(0_i32);
                continue;
            } else if elevator.moving_up {
                elevator_decisions.push(1_i32);
                continue;
            } else {
                elevator_decisions.push(-1_i32);
                continue;
            }
        }

        //Loop through the elevator decisions and update the elevators
        for (i, decision) in elevator_decisions.iter().enumerate() {
            //Update the elevator direction
            if *decision > 0_i32 {
                self.building.elevators[i].stopped = false;
                self.building.elevators[i].moving_up = true;
            } else if *decision < 0_i32 {
                self.building.elevators[i].stopped = false;
                self.building.elevators[i].moving_up = false;
            } else {
                self.building.elevators[i].stopped = true;
            }

            //Update the elevator
            let _new_floor_index = self.building.elevators[i].update_floor();
        }
    }
}