1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// Written in 2019 by Andrew Poelstra <apoelstra@wpsoftware.net>
// SPDX-License-Identifier: CC0-1.0

//! # Function-like Expression Language
//!

use std::fmt;
use std::str::FromStr;

use crate::{errstr, Error, MAX_RECURSION_DEPTH};

#[derive(Debug, Clone)]
/// A token of the form `x(...)` or `x`
pub struct Tree<'a> {
    /// The name `x`
    pub name: &'a str,
    /// The comma-separated contents of the `(...)`, if any
    pub args: Vec<Tree<'a>>,
}
// or_b(pk(A),pk(B))
//
// A = musig(musig(B,C),D,E)
// or_b()
// pk(A), pk(B)

/// A trait for extracting a structure from a Tree representation in token form
pub trait FromTree: Sized {
    /// Extract a structure from Tree representation
    fn from_tree(top: &Tree<'_>) -> Result<Self, Error>;
}

impl<'a> fmt::Display for Tree<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "({}", self.name)?;
        for arg in &self.args {
            write!(f, ",{}", arg)?;
        }
        write!(f, ")")
    }
}

enum Found {
    Nothing,
    LBracket(usize), // Either a left ( or {
    Comma(usize),
    RBracket(usize), // Either a right ) or }
}

fn next_expr(sl: &str, delim: char) -> Found {
    // Decide whether we are parsing a key or not.
    // When parsing a key ignore all the '(' and ')'.
    // We keep count of lparan whenever we are inside a key context
    // We exit the context whenever we find the corresponding ')'
    // in which we entered the context. This allows to special case
    // parse the '(' ')' inside key expressions.(slip77 and musig).
    let mut key_ctx = false;
    let mut key_lparan_count = 0;
    let mut found = Found::Nothing;
    if delim == '(' {
        for (n, ch) in sl.char_indices() {
            match ch {
                '(' => {
                    // already inside a key context
                    if key_ctx {
                        key_lparan_count += 1;
                    } else if &sl[..n] == "slip77" || &sl[..n] == "musig" {
                        key_lparan_count = 1;
                        key_ctx = true;
                    } else {
                        found = Found::LBracket(n);
                        break;
                    }
                }
                ',' => {
                    if !key_ctx {
                        found = Found::Comma(n);
                        break;
                    }
                }
                ')' => {
                    if key_ctx {
                        key_lparan_count -= 1;
                        if key_lparan_count == 0 {
                            key_ctx = false;
                        }
                    } else {
                        found = Found::RBracket(n);
                        break;
                    }
                }
                _ => {}
            }
        }
    } else if delim == '{' {
        let mut new_count = 0;
        for (n, ch) in sl.char_indices() {
            match ch {
                '{' => {
                    found = Found::LBracket(n);
                    break;
                }
                '(' => {
                    new_count += 1;
                }
                ',' => {
                    if new_count == 0 {
                        found = Found::Comma(n);
                        break;
                    }
                }
                ')' => {
                    new_count -= 1;
                }
                '}' => {
                    found = Found::RBracket(n);
                    break;
                }
                _ => {}
            }
        }
    } else {
        unreachable!("{}", "Internal: delimiters in parsing must be '(' or '{'");
    }
    found
}

// Get the corresponding delim
fn closing_delim(delim: char) -> char {
    match delim {
        '(' => ')',
        '{' => '}',
        _ => unreachable!("Unknown delimiter"),
    }
}

impl<'a> Tree<'a> {
    /// Parse an expression with round brackets
    pub fn from_slice(sl: &'a str) -> Result<(Tree<'a>, &'a str), Error> {
        // Parsing TapTree or just miniscript
        Self::from_slice_delim(sl, 0u32, '(')
    }

    pub(crate) fn from_slice_delim(
        mut sl: &'a str,
        depth: u32,
        delim: char,
    ) -> Result<(Tree<'a>, &'a str), Error> {
        if depth >= MAX_RECURSION_DEPTH {
            return Err(Error::MaxRecursiveDepthExceeded);
        }

        match next_expr(sl, delim) {
            // String-ending terminal
            Found::Nothing => Ok((
                Tree {
                    name: sl,
                    args: vec![],
                },
                "",
            )),
            // Terminal
            Found::Comma(n) | Found::RBracket(n) => Ok((
                Tree {
                    name: &sl[..n],
                    args: vec![],
                },
                &sl[n..],
            )),
            // Function call
            Found::LBracket(n) => {
                let mut ret = Tree {
                    name: &sl[..n],
                    args: vec![],
                };

                sl = &sl[n + 1..];
                loop {
                    let (arg, new_sl) = Tree::from_slice_delim(sl, depth + 1, delim)?;
                    ret.args.push(arg);

                    if new_sl.is_empty() {
                        return Err(Error::ExpectedChar(closing_delim(delim)));
                    }

                    sl = &new_sl[1..];
                    match new_sl.as_bytes()[0] {
                        b',' => {}
                        last_byte => {
                            if last_byte == closing_delim(delim) as u8 {
                                break;
                            } else {
                                return Err(Error::ExpectedChar(closing_delim(delim)));
                            }
                        }
                    }
                }
                Ok((ret, sl))
            }
        }
    }

    /// Parses a tree from a string
    #[allow(clippy::should_implement_trait)] // seems to be a false positive
    pub fn from_str(s: &'a str) -> Result<Tree<'a>, Error> {
        // Filter out non-ASCII because we byte-index strings all over the
        // place and Rust gets very upsbt when you splinch a string.
        for ch in s.bytes() {
            if !ch.is_ascii() {
                return Err(Error::Unprintable(ch));
            }
        }

        let (top, rem) = Tree::from_slice(s)?;
        if rem.is_empty() {
            Ok(top)
        } else {
            Err(errstr(rem))
        }
    }
}

/// Parse a string as a u32, for timelocks or thresholds
pub fn parse_num<T: FromStr>(s: &str) -> Result<T, Error> {
    if s.len() > 1 {
        let ch = s.chars().next().unwrap();
        let ch = if ch == '-' {
            s.chars().nth(1).ok_or(Error::Unexpected(
                "Negative number must follow dash sign".to_string(),
            ))?
        } else {
            ch
        };
        if !('1'..='9').contains(&ch) {
            return Err(Error::Unexpected(
                "Number must start with a digit 1-9".to_string(),
            ));
        }
    }
    T::from_str(s).map_err(|_| errstr(s))
}

/// Attempts to parse a terminal expression
pub fn terminal<T, F, Err>(term: &Tree<'_>, convert: F) -> Result<T, Error>
where
    F: FnOnce(&str) -> Result<T, Err>,
    Err: ToString,
{
    if term.args.is_empty() {
        convert(term.name).map_err(|e| Error::Unexpected(e.to_string()))
    } else {
        Err(errstr(term.name))
    }
}

/// Attempts to parse an expression with exactly one child
pub fn unary<L, T, F>(term: &Tree<'_>, convert: F) -> Result<T, Error>
where
    L: FromTree,
    F: FnOnce(L) -> T,
{
    if term.args.len() == 1 {
        let left = FromTree::from_tree(&term.args[0])?;
        Ok(convert(left))
    } else {
        Err(errstr(term.name))
    }
}

/// Attempts to parse an expression with exactly two children
pub fn binary<L, R, T, F>(term: &Tree<'_>, convert: F) -> Result<T, Error>
where
    L: FromTree,
    R: FromTree,
    F: FnOnce(L, R) -> T,
{
    if term.args.len() == 2 {
        let left = FromTree::from_tree(&term.args[0])?;
        let right = FromTree::from_tree(&term.args[1])?;
        Ok(convert(left, right))
    } else {
        Err(errstr(term.name))
    }
}

#[cfg(test)]
mod tests {

    use super::parse_num;

    #[test]
    fn test_parse_num() {
        assert!(parse_num::<u32>("0").is_ok());
        assert!(parse_num::<u32>("00").is_err());
        assert!(parse_num::<u32>("0000").is_err());
        assert!(parse_num::<u32>("06").is_err());
        assert!(parse_num::<u32>("+6").is_err());
        assert!(parse_num::<u32>("-6").is_err());
    }
}