egobox-moe 0.7.1

A library for mixture of expert gaussian processes
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
//use super::gaussian_mixture::GaussianMixture;
use super::gaussian_mixture::GaussianMixture;
use crate::clustering::{find_best_number_of_clusters, sort_by_cluster, Clustered, Clustering};
use crate::errors::MoeError;
use crate::errors::Result;
use crate::expertise_macros::*;
use crate::parameters::{
    CorrelationSpec, MoeParams, MoeValidParams, Recombination, RegressionSpec,
};
use crate::surrogates::*;
use egobox_gp::{correlation_models::*, mean_models::*, GaussianProcess};
use linfa::dataset::Records;
use linfa::traits::{Fit, Predict, PredictInplace};
use linfa::{Dataset, DatasetBase, Float, ParamGuard};
use linfa_clustering::GaussianMixtureModel;
use log::{debug, info, trace};
use paste::paste;
use std::cmp::Ordering;
use std::ops::Sub;

#[cfg(not(feature = "blas"))]
use linfa_linalg::norm::*;
use ndarray::{
    concatenate, s, Array1, Array2, Array3, ArrayBase, ArrayView2, Axis, Data, Ix2, Zip,
};

#[cfg(feature = "blas")]
use ndarray_linalg::Norm;
use ndarray_rand::rand::{Rng, SeedableRng};
use ndarray_stats::QuantileExt;
use rand_xoshiro::Xoshiro256Plus;

#[cfg(feature = "serializable")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "persistent")]
use std::fs;
#[cfg(feature = "persistent")]
use std::io::Write;

macro_rules! check_allowed {
    ($spec:ident, $model_kind:ident, $model:ident, $list:ident) => {
        paste! {
            if $spec.contains([< $model_kind Spec>]::[< $model:upper >]) {
                $list.push(stringify!($model));
            }
        }
    };
}

impl<D: Data<Elem = f64>, R: Rng + SeedableRng + Clone>
    Fit<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>, MoeError> for MoeValidParams<f64, R>
{
    type Object = Moe;

    /// Fit Moe parameters using maximum likelihood
    ///
    /// # Errors
    ///
    /// * [MoeError::ClusteringError]: if there is not enough points regarding the clusters,
    /// * [MoeError::GpError]: if gaussian process fitting fails
    ///
    fn fit(
        &self,
        dataset: &DatasetBase<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>>,
    ) -> Result<Self::Object> {
        let x = dataset.records();
        let y = dataset.targets();
        self.train(x, y)
    }
}

impl<R: Rng + SeedableRng + Clone> MoeValidParams<f64, R> {
    pub fn train(
        &self,
        xt: &ArrayBase<impl Data<Elem = f64>, Ix2>,
        yt: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Moe> {
        let _opt = env_logger::try_init().ok();
        let nx = xt.ncols();
        let data = concatenate(Axis(1), &[xt.view(), yt.view()]).unwrap();

        let (n_clusters, recomb) = if self.n_clusters() == 0 {
            // automatic mode
            let max_nb_clusters = xt.nrows() / 10 + 1;
            find_best_number_of_clusters(
                xt,
                yt,
                max_nb_clusters,
                self.kpls_dim(),
                self.regression_spec(),
                self.correlation_spec(),
                self.rng(),
            )
        } else {
            (self.n_clusters(), self.recombination())
        };
        if self.n_clusters() == 0 {
            debug!("Automatic settings {} {:?}", n_clusters, recomb);
        }

        let training = if recomb == Recombination::Smooth(None) && self.n_clusters() > 1 {
            // Extract 5% of data for validation
            // TODO: Use cross-validation ? Performances
            let (_, training_data) = extract_part(&data, 5);
            training_data
        } else {
            data.to_owned()
        };
        let dataset = Dataset::from(training);

        let gmx = if self.gmx().is_some() {
            *self.gmx().as_ref().unwrap().clone()
        } else {
            let gmm = GaussianMixtureModel::params(n_clusters)
                .n_runs(20)
                .with_rng(self.rng())
                .fit(&dataset)
                .expect("Training data clustering");

            // GMX for prediction
            let weights = gmm.weights().to_owned();
            let means = gmm.means().slice(s![.., ..nx]).to_owned();
            let covariances = gmm.covariances().slice(s![.., ..nx, ..nx]).to_owned();
            let factor = match recomb {
                Recombination::Smooth(Some(f)) => f,
                Recombination::Smooth(None) => 1.,
                Recombination::Hard => 1.,
            };
            GaussianMixture::new(weights, means, covariances)?.heaviside_factor(factor)
        };

        let clustering = Clustering::new(gmx, recomb);
        self.train_on_clusters(&xt.view(), &yt.view(), &clustering)
    }

    /// Using the current state of the clustering, select and train the experts
    /// Returns the fitted mixture of experts model
    pub fn train_on_clusters(
        &self,
        xt: &ArrayBase<impl Data<Elem = f64>, Ix2>,
        yt: &ArrayBase<impl Data<Elem = f64>, Ix2>,
        clustering: &Clustering,
    ) -> Result<Moe> {
        let gmx = clustering.gmx();
        let recomb = clustering.recombination();
        let nx = xt.ncols();
        let data = concatenate(Axis(1), &[xt.view(), yt.view()]).unwrap();

        let dataset_clustering = gmx.predict(xt);
        let clusters = sort_by_cluster(gmx.n_clusters(), &data, &dataset_clustering);

        check_number_of_points(&clusters, xt.ncols())?;

        // Fit GPs on clustered data
        let mut experts = Vec::new();
        let nb_clusters = clusters.len();
        for cluster in clusters {
            if nb_clusters > 1 && cluster.nrows() < 3 {
                return Err(MoeError::ClusteringError(format!(
                    "Not enough points in cluster, requires at least 3, got {}",
                    cluster.nrows()
                )));
            }
            let expert = self.find_best_expert(nx, &cluster)?;
            experts.push(expert);
        }

        if recomb == Recombination::Smooth(None) && self.n_clusters() > 1 {
            // Extract 5% of data for validation
            // TODO: Use cross-validation ? Performances
            let (test, _) = extract_part(&data, 5);
            let xtest = Some(test.slice(s![.., ..nx]).to_owned());
            let ytest = Some(test.slice(s![.., nx..]).to_owned());
            let factor =
                self.optimize_heaviside_factor(&experts, gmx, &xtest.unwrap(), &ytest.unwrap());
            info!("Retrain mixture with optimized heaviside factor={}", factor);
            let moe = MoeParams::from(self.clone())
                .n_clusters(gmx.n_clusters())
                .recombination(Recombination::Smooth(Some(factor)))
                .check()?
                .train(xt, yt)?; // needs to train the gaussian mixture on all data (xt, yt) as it was
                                 // previously trained on data excluding test data (see train method)
            Ok(moe)
        } else {
            Ok(Moe {
                recombination: recomb,
                experts,
                gmx: gmx.clone(),
                output_dim: yt.ncols(),
            })
        }
    }

    /// Select the surrogate which gives the smallest prediction error on the given data
    /// The error is computed using cross-validation
    fn find_best_expert(
        &self,
        nx: usize,
        data: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Box<dyn Surrogate>> {
        let xtrain = data.slice(s![.., ..nx]).to_owned();
        let ytrain = data.slice(s![.., nx..]).to_owned();
        let mut dataset = Dataset::from((xtrain.clone(), ytrain.clone()));
        let regression_spec = self.regression_spec();
        let mut allowed_means = vec![];
        check_allowed!(regression_spec, Regression, Constant, allowed_means);
        check_allowed!(regression_spec, Regression, Linear, allowed_means);
        check_allowed!(regression_spec, Regression, Quadratic, allowed_means);
        let correlation_spec = self.correlation_spec();
        let mut allowed_corrs = vec![];
        check_allowed!(
            correlation_spec,
            Correlation,
            SquaredExponential,
            allowed_corrs
        );
        check_allowed!(
            correlation_spec,
            Correlation,
            AbsoluteExponential,
            allowed_corrs
        );
        check_allowed!(correlation_spec, Correlation, Matern32, allowed_corrs);
        check_allowed!(correlation_spec, Correlation, Matern52, allowed_corrs);

        let best = if allowed_means.len() == 1 && allowed_corrs.len() == 1 {
            (format!("{}_{}", allowed_means[0], allowed_corrs[0]), None) // shortcut
        } else {
            let mut map_error = Vec::new();
            compute_errors!(self, allowed_means, allowed_corrs, dataset, map_error);
            let errs: Vec<f64> = map_error.iter().map(|(_, err)| *err).collect();
            debug!("Accuracies {:?}", map_error);
            let argmin = errs
                .iter()
                .enumerate()
                .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Equal))
                .map(|(index, _)| index)
                .unwrap();
            (map_error[argmin].0.clone(), Some(map_error[argmin].1))
        };
        let best_expert_params: std::result::Result<Box<dyn SurrogateParams>, MoeError> = match best
            .0
            .as_str()
        {
            "Constant_SquaredExponential" => {
                Ok(make_surrogate_params!(Constant, SquaredExponential))
            }
            "Constant_AbsoluteExponential" => {
                Ok(make_surrogate_params!(Constant, AbsoluteExponential))
            }
            "Constant_Matern32" => Ok(make_surrogate_params!(Constant, Matern32)),
            "Constant_Matern52" => Ok(make_surrogate_params!(Constant, Matern52)),
            "Linear_SquaredExponential" => Ok(make_surrogate_params!(Linear, SquaredExponential)),
            "Linear_AbsoluteExponential" => Ok(make_surrogate_params!(Linear, AbsoluteExponential)),
            "Linear_Matern32" => Ok(make_surrogate_params!(Linear, Matern32)),
            "Linear_Matern52" => Ok(make_surrogate_params!(Linear, Matern52)),
            "Quadratic_SquaredExponential" => {
                Ok(make_surrogate_params!(Quadratic, SquaredExponential))
            }
            "Quadratic_AbsoluteExponential" => {
                Ok(make_surrogate_params!(Quadratic, AbsoluteExponential))
            }
            "Quadratic_Matern32" => Ok(make_surrogate_params!(Quadratic, Matern32)),
            "Quadratic_Matern52" => Ok(make_surrogate_params!(Quadratic, Matern52)),
            _ => return Err(MoeError::ExpertError(format!("Unknown expert {}", best.0))),
        };
        let mut expert_params = best_expert_params?;
        expert_params.kpls_dim(self.kpls_dim());
        let expert = expert_params.train(&xtrain.view(), &ytrain.view());
        if let Some(v) = best.1 {
            info!("Best expert {} accuracy={}", best.0, v);
        }
        expert.map_err(MoeError::from)
    }

    /// Take the best heaviside factor from 0.1 to 2.1 (step 0.1).
    /// Mixture (`gmx` and experts`) is already trained only the continuous recombination is changed
    /// and the factor giving the smallest prediction error on the given test data  
    /// Used only in case of smooth recombination
    fn optimize_heaviside_factor(
        &self,
        experts: &[Box<dyn Surrogate>],
        gmx: &GaussianMixture<f64>,
        xtest: &ArrayBase<impl Data<Elem = f64>, Ix2>,
        ytest: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> f64 {
        if self.recombination() == Recombination::Hard || self.n_clusters() == 1 {
            1.
        } else {
            let scale_factors = Array1::linspace(0.1, 2.1, 20);
            let errors = scale_factors.map(move |&factor| {
                let gmx2 = gmx.clone();
                let gmx2 = gmx2.heaviside_factor(factor);
                let pred = predict_values_smooth(experts, &gmx2, xtest).unwrap();
                pred.sub(ytest).mapv(|x| x * x).sum().sqrt() / xtest.mapv(|x| x * x).sum().sqrt()
            });

            let min_error_index = errors.argmin().unwrap();
            if *errors.max().unwrap() < 1e-6 {
                1.
            } else {
                scale_factors[min_error_index]
            }
        }
    }
}

fn check_number_of_points<F>(
    clusters: &[ArrayBase<impl Data<Elem = F>, Ix2>],
    dim: usize,
) -> Result<()> {
    if clusters.len() > 1 {
        let min_number_point = factorial(dim + 2) / (factorial(dim) * factorial(2));
        for cluster in clusters {
            if cluster.len() < min_number_point {
                return Err(MoeError::ClusteringError(format!(
                    "Not enough points in training set. Need {} points, got {}",
                    min_number_point,
                    cluster.len()
                )));
            }
        }
    }
    Ok(())
}

fn factorial(n: usize) -> usize {
    (1..=n).product()
}

/// Predict outputs at given points with `experts` and gaussian mixture `gmx`.
/// `gmx` is used to get the probability of x to belongs to one cluster
/// or another (ie responsabilities). Those responsabilities are used to combine
/// output values predict by each cluster experts.
fn predict_values_smooth(
    experts: &[Box<dyn Surrogate>],
    gmx: &GaussianMixture<f64>,
    points: &ArrayBase<impl Data<Elem = f64>, Ix2>,
) -> Result<Array2<f64>> {
    let probas = gmx.predict_probas(points);
    let mut preds = Array1::<f64>::zeros(points.nrows());

    Zip::from(&mut preds)
        .and(points.rows())
        .and(probas.rows())
        .for_each(|y, x, p| {
            let x = x.insert_axis(Axis(0));
            let preds: Array1<f64> = experts
                .iter()
                .map(|gp| gp.predict_values(&x).unwrap()[[0, 0]])
                .collect();
            *y = (preds * p).sum();
        });
    Ok(preds.insert_axis(Axis(1)))
}

/// Mixture of gaussian process experts
#[cfg_attr(feature = "serializable", derive(Serialize, Deserialize))]
pub struct Moe {
    /// The mode of recombination to get the output prediction from experts prediction
    recombination: Recombination<f64>,
    /// The list of the best experts trained on each cluster
    experts: Vec<Box<dyn Surrogate>>,
    /// The gaussian mixture allowing to predict cluster responsabilities for a given point
    gmx: GaussianMixture<f64>,
    /// The dimension of the predicted output
    output_dim: usize,
}

impl std::fmt::Display for Moe {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let recomb = match self.recombination() {
            Recombination::Hard => "Hard".to_string(),
            Recombination::Smooth(Some(f)) => format!("Smooth({})", f),
            Recombination::Smooth(None) => "Smooth".to_string(),
        };
        let experts = self
            .experts
            .iter()
            .map(|expert| expert.to_string())
            .reduce(|acc, s| acc + ", " + &s)
            .unwrap();
        write!(f, "Mixture[{}], ({})", &recomb, &experts)
    }
}

impl Clustered for Moe {
    /// Number of clusters
    fn n_clusters(&self) -> usize {
        self.gmx.n_clusters()
    }

    /// Clustering Recombination
    fn recombination(&self) -> Recombination<f64> {
        self.recombination()
    }

    /// Convert to clustering
    fn to_clustering(&self) -> Clustering {
        Clustering {
            recombination: self.recombination(),
            gmx: self.gmx.clone(),
        }
    }
}

#[cfg_attr(feature = "serializable", typetag::serde)]
impl Surrogate for Moe {
    fn predict_values(&self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
        match self.recombination {
            Recombination::Hard => self.predict_values_hard(x),
            Recombination::Smooth(_) => self.predict_values_smooth(x),
        }
    }

    fn predict_variances(&self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
        match self.recombination {
            Recombination::Hard => self.predict_variances_hard(x),
            Recombination::Smooth(_) => self.predict_variances_smooth(x),
        }
    }

    fn predict_derivatives(&self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
        match self.recombination {
            Recombination::Hard => self.predict_derivatives_hard(x),
            Recombination::Smooth(_) => self.predict_derivatives_smooth(x),
        }
    }

    fn predict_variance_derivatives(&self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
        match self.recombination {
            Recombination::Hard => self.predict_variance_derivatives_hard(x),
            Recombination::Smooth(_) => self.predict_variance_derivatives_smooth(x),
        }
    }

    /// Save Moe model in given file.
    #[cfg(feature = "persistent")]
    fn save(&self, path: &str) -> Result<()> {
        let mut file = fs::File::create(path).unwrap();
        let bytes = match serde_json::to_string(self) {
            Ok(b) => b,
            Err(err) => return Err(MoeError::SaveError(err)),
        };
        file.write_all(bytes.as_bytes())?;
        Ok(())
    }
}

/// A trait for surrogates using clustering
pub trait ClusteredSurrogate: Clustered + Surrogate {}

impl ClusteredSurrogate for Moe {}

impl Moe {
    /// Constructor of mixture of experts parameters
    pub fn params() -> MoeParams<f64, Xoshiro256Plus> {
        MoeParams::new()
    }

    /// Recombination mode
    pub fn recombination(&self) -> Recombination<f64> {
        self.recombination
    }

    /// Gaussian mixture
    pub fn gmx(&self) -> &GaussianMixture<f64> {
        &self.gmx
    }

    /// Retrieve output dimensions from
    pub fn output_dim(&self) -> usize {
        self.output_dim
    }

    /// Sets recombination mode
    pub fn set_recombination(mut self, recombination: Recombination<f64>) -> Self {
        self.recombination = match recombination {
            Recombination::Hard => recombination,
            Recombination::Smooth(None) => Recombination::Smooth(Some(1.)),
            Recombination::Smooth(Some(_)) => recombination,
        };
        self
    }

    pub fn set_gmx(&mut self, weights: Array1<f64>, means: Array2<f64>, covariances: Array3<f64>) {
        self.gmx = GaussianMixture::new(weights, means, covariances).unwrap();
    }

    /// Predict outputs at a set of points `x` specified as (n, nx) matrix.
    /// Gaussian Mixture is used to get the probability of the point to belongs to one cluster
    /// or another (ie responsabilities).     
    /// The smooth recombination of each cluster expert responsabilty is used to get the result.
    pub fn predict_values_smooth(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        predict_values_smooth(&self.experts, &self.gmx, x)
    }

    /// Predict variances at a set of points `x` specified as (n, nx) matrix.
    /// Gaussian Mixture is used to get the probability of the point to belongs to one cluster
    /// or another (ie responsabilities).
    /// The smooth recombination of each cluster expert responsabilty is used to get the result.
    pub fn predict_variances_smooth(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        let probas = self.gmx.predict_probas(x);
        let mut preds = Array1::<f64>::zeros(x.nrows());

        Zip::from(&mut preds)
            .and(x.rows())
            .and(probas.rows())
            .for_each(|y, x, p| {
                let x = x.insert_axis(Axis(0));
                let preds: Array1<f64> = self
                    .experts
                    .iter()
                    .map(|gp| gp.predict_variances(&x).unwrap()[[0, 0]])
                    .collect();
                *y = (preds * p * p).sum();
            });
        Ok(preds.insert_axis(Axis(1)))
    }

    /// Predict derivatives of the output at a set of points `x` specified as (n, nx) matrix.
    /// Return derivatives as a (n, nx) matrix where the ith row contain the partial derivatives of
    /// of the output wrt the nx components of `x` valued at the ith x point.
    /// The smooth recombination of each cluster expert responsability is used to get the result.
    pub fn predict_derivatives_smooth(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        let probas = self.gmx.predict_probas(x);
        let probas_drv = self.gmx.predict_probas_derivatives(x);
        let mut drv = Array2::<f64>::zeros((x.nrows(), x.ncols()));

        Zip::from(drv.rows_mut())
            .and(x.rows())
            .and(probas.rows())
            .and(probas_drv.outer_iter())
            .for_each(|mut y, x, p, pprime| {
                let x = x.insert_axis(Axis(0));
                let preds: Array1<f64> = self
                    .experts
                    .iter()
                    .map(|gp| gp.predict_values(&x).unwrap()[[0, 0]])
                    .collect();
                let drvs: Vec<Array1<f64>> = self
                    .experts
                    .iter()
                    .map(|gp| gp.predict_derivatives(&x).unwrap().row(0).to_owned())
                    .collect();

                let preds = preds.insert_axis(Axis(1));
                let mut preds_drv = Array2::zeros((self.experts.len(), x.len()));
                Zip::indexed(preds_drv.rows_mut()).for_each(|i, mut jc| jc.assign(&drvs[i]));

                let mut term1 = Array2::zeros((self.experts.len(), x.len()));
                Zip::from(term1.rows_mut())
                    .and(&p)
                    .and(preds_drv.rows())
                    .for_each(|mut t, p, der| t.assign(&(der.to_owned().mapv(|v| v * p))));
                let term1 = term1.sum_axis(Axis(0));

                let term2 = pprime.to_owned() * preds;
                let term2 = term2.sum_axis(Axis(0));

                y.assign(&(term1 + term2));
            });
        Ok(drv)
    }

    /// Predict derivatives of the variance at a set of points `x` specified as (n, nx) matrix.
    /// Return derivatives as a (n, nx) matrix where the ith row contain the partial derivatives of
    /// of the vairance wrt the nx components of `x` valued at the ith x point.
    /// The smooth recombination of each cluster expert responsability is used to get the result.
    pub fn predict_variance_derivatives_smooth(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        let probas = self.gmx.predict_probas(x);
        let probas_drv = self.gmx.predict_probas_derivatives(x);

        let mut drv = Array2::<f64>::zeros((x.nrows(), x.ncols()));

        Zip::from(drv.rows_mut())
            .and(x.rows())
            .and(probas.rows())
            .and(probas_drv.outer_iter())
            .for_each(|mut y, xi, p, pprime| {
                let xii = xi.insert_axis(Axis(0));
                let preds: Array1<f64> = self
                    .experts
                    .iter()
                    .map(|gp| gp.predict_variances(&xii).unwrap()[[0, 0]])
                    .collect();
                let drvs: Vec<Array1<f64>> = self
                    .experts
                    .iter()
                    .map(|gp| {
                        gp.predict_variance_derivatives(&xii)
                            .unwrap()
                            .row(0)
                            .to_owned()
                    })
                    .collect();

                let preds = preds.insert_axis(Axis(1));
                let mut preds_drv = Array2::zeros((self.experts.len(), xi.len()));
                Zip::indexed(preds_drv.rows_mut()).for_each(|i, mut jc| jc.assign(&drvs[i]));

                let mut term1 = Array2::zeros((self.experts.len(), xi.len()));
                Zip::from(term1.rows_mut())
                    .and(&p)
                    .and(preds_drv.rows())
                    .for_each(|mut t, p, der| t.assign(&(der.to_owned().mapv(|v| v * p * p))));
                let term1 = term1.sum_axis(Axis(0));

                let term2 = (p.to_owned() * pprime * preds).mapv(|v| 2. * v);
                let term2 = term2.sum_axis(Axis(0));

                y.assign(&(term1 + term2));
            });

        Ok(drv)
    }

    /// Predict outputs at a set of points `x` specified as (n, nx) matrix.
    /// Gaussian Mixture is used to get the cluster where the point belongs (highest responsability)
    /// Then the expert of the cluster is used to predict the output value.
    /// Returns the ouputs as a (n, 1) column vector
    pub fn predict_values_hard(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        let clustering = self.gmx.predict(x);
        debug!("Clustering {:?}", clustering);
        let mut preds = Array2::zeros((x.nrows(), 1));
        Zip::from(preds.rows_mut())
            .and(x.rows())
            .and(&clustering)
            .for_each(|mut y, x, &c| {
                y.assign(
                    &self.experts[c]
                        .predict_values(&x.insert_axis(Axis(0)))
                        .unwrap()
                        .row(0),
                );
            });
        Ok(preds)
    }

    /// Predict variance at a set of points `x` specified as (n, nx) matrix.
    /// Gaussian Mixture is used to get the cluster where the point belongs (highest responsability)
    /// The expert of the cluster is used to predict variance value.
    /// Returns the variances as a (n, 1) column vector
    pub fn predict_variances_hard(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        let clustering = self.gmx.predict(x);
        debug!("Clustering {:?}", clustering);
        let mut variances = Array2::zeros((x.nrows(), 1));
        Zip::from(variances.rows_mut())
            .and(x.rows())
            .and(&clustering)
            .for_each(|mut y, x, &c| {
                y.assign(
                    &self.experts[c]
                        .predict_variances(&x.insert_axis(Axis(0)))
                        .unwrap()
                        .row(0),
                );
            });
        Ok(variances)
    }

    /// Predict derivatives of the output at a set of points `x` specified as (n, nx) matrix.
    /// Gaussian Mixture is used to get the cluster where the point belongs (highest responsability)
    /// The expert of the cluster is used to predict variance value.
    /// Returns derivatives as a (n, nx) matrix where the ith row contain the partial derivatives of
    /// of the output wrt the nx components of `x` valued at the ith x point.
    pub fn predict_derivatives_hard(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        let mut drv = Array2::<f64>::zeros((x.nrows(), x.ncols()));
        let clustering = self.gmx.predict(x);
        Zip::from(drv.rows_mut())
            .and(x.rows())
            .and(&clustering)
            .for_each(|mut drv_i, xi, &c| {
                let x = xi.to_owned().insert_axis(Axis(0));
                let x_drv: ArrayBase<ndarray::OwnedRepr<f64>, ndarray::Dim<[usize; 2]>> =
                    self.experts[c].predict_derivatives(&x.view()).unwrap();
                drv_i.assign(&x_drv.column(0))
            });
        Ok(drv)
    }

    /// Predict derivatives of the variances at a set of points `x` specified as (n, nx) matrix.
    /// Gaussian Mixture is used to get the cluster where the point belongs (highest responsability)
    /// The expert of the cluster is used to predict variance value.
    /// Returns derivatives as a (n, nx) matrix where the ith row contain the partial derivatives of
    /// of the output wrt the nx components of `x` valued at the ith x point.
    pub fn predict_variance_derivatives_hard(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        let mut vardrv = Array2::<f64>::zeros((x.nrows(), x.ncols()));
        let clustering = self.gmx.predict(x);
        Zip::from(vardrv.rows_mut())
            .and(x.rows())
            .and(&clustering)
            .for_each(|mut vardrv_i, xi, &c| {
                let x = xi.to_owned().insert_axis(Axis(0));
                let x_vardrv: ArrayBase<ndarray::OwnedRepr<f64>, ndarray::Dim<[usize; 2]>> = self
                    .experts[c]
                    .predict_variance_derivatives(&x.view())
                    .unwrap();
                vardrv_i.assign(&x_vardrv.row(0))
            });
        Ok(vardrv)
    }

    pub fn predict_values(&self, x: &ArrayBase<impl Data<Elem = f64>, Ix2>) -> Result<Array2<f64>> {
        <Moe as Surrogate>::predict_values(self, &x.view())
    }

    pub fn predict_variances(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        <Moe as Surrogate>::predict_variances(self, &x.view())
    }

    pub fn predict_derivatives(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        <Moe as Surrogate>::predict_derivatives(self, &x.view())
    }

    pub fn predict_variance_derivatives(
        &self,
        x: &ArrayBase<impl Data<Elem = f64>, Ix2>,
    ) -> Result<Array2<f64>> {
        <Moe as Surrogate>::predict_variance_derivatives(self, &x.view())
    }

    #[cfg(feature = "persistent")]
    /// Load Moe from given json file.
    pub fn load(path: &str) -> Result<Box<Moe>> {
        let data = fs::read_to_string(path)?;
        let moe: Moe = serde_json::from_str(&data).unwrap();
        Ok(Box::new(moe))
    }
}

/// Take one out of `quantile` in a set of data rows
/// Returns the selected part and the remaining data.
fn extract_part<F: Float>(
    data: &ArrayBase<impl Data<Elem = F>, Ix2>,
    quantile: usize,
) -> (Array2<F>, Array2<F>) {
    let nsamples = data.nrows();
    let indices = Array1::range(0., nsamples as f32, quantile as f32).mapv(|v| v as usize);
    let data_test = data.select(Axis(0), indices.as_slice().unwrap());
    let indices2: Vec<usize> = (0..nsamples).filter(|i| i % quantile != 0).collect();
    let data_train = data.select(Axis(0), &indices2);
    (data_test, data_train)
}

impl<D: Data<Elem = f64>> PredictInplace<ArrayBase<D, Ix2>, Array2<f64>> for Moe {
    fn predict_inplace(&self, x: &ArrayBase<D, Ix2>, y: &mut Array2<f64>) {
        assert_eq!(
            x.nrows(),
            y.nrows(),
            "The number of data points must match the number of output targets."
        );

        let values = self.predict_values(x).expect("MoE prediction");
        *y = values;
    }

    fn default_target(&self, x: &ArrayBase<D, Ix2>) -> Array2<f64> {
        Array2::zeros((x.nrows(), self.output_dim()))
    }
}

/// Adaptator to implement `linfa::Predict` for variance prediction
struct MoeVariancePredictor<'a>(&'a Moe);
impl<'a, D: Data<Elem = f64>> PredictInplace<ArrayBase<D, Ix2>, Array2<f64>>
    for MoeVariancePredictor<'a>
{
    fn predict_inplace(&self, x: &ArrayBase<D, Ix2>, y: &mut Array2<f64>) {
        assert_eq!(
            x.nrows(),
            y.nrows(),
            "The number of data points must match the number of output targets."
        );

        let values = self
            .0
            .predict_variances(x)
            .expect("MoE variances prediction");
        *y = values;
    }

    fn default_target(&self, x: &ArrayBase<D, Ix2>) -> Array2<f64> {
        Array2::zeros((x.nrows(), self.0.output_dim()))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_abs_diff_eq;
    use argmin_testfunctions::rosenbrock;
    use egobox_doe::{Lhs, SamplingMethod};
    use ndarray::{array, Array, Array2, Zip};
    use ndarray_npy::write_npy;
    use ndarray_rand::rand::SeedableRng;
    use ndarray_rand::rand_distr::Uniform;
    use ndarray_rand::RandomExt;
    use rand_xoshiro::Xoshiro256Plus;

    fn f_test_1d(x: &Array2<f64>) -> Array2<f64> {
        let mut y = Array2::zeros(x.dim());
        Zip::from(&mut y).and(x).for_each(|yi, &xi| {
            if xi < 0.4 {
                *yi = xi * xi;
            } else if (0.4..0.8).contains(&xi) {
                *yi = 3. * xi + 1.;
            } else {
                *yi = f64::sin(10. * xi);
            }
        });
        y
    }

    fn df_test_1d(x: &Array2<f64>) -> Array2<f64> {
        let mut y = Array2::zeros(x.dim());
        Zip::from(&mut y).and(x).for_each(|yi, &xi| {
            if xi < 0.4 {
                *yi = 2. * xi;
            } else if (0.4..0.8).contains(&xi) {
                *yi = 3.;
            } else {
                *yi = 10. * f64::cos(10. * xi);
            }
        });
        y
    }

    #[test]
    fn test_moe_hard() {
        let mut rng = Xoshiro256Plus::seed_from_u64(0);
        let xt = Array2::random_using((50, 1), Uniform::new(0., 1.), &mut rng);
        let yt = f_test_1d(&xt);
        let moe = Moe::params()
            .n_clusters(3)
            .regression_spec(RegressionSpec::CONSTANT)
            .correlation_spec(CorrelationSpec::SQUAREDEXPONENTIAL)
            .recombination(Recombination::Hard)
            .with_rng(rng)
            .fit(&Dataset::new(xt, yt))
            .expect("MOE fitted");
        let x = Array1::linspace(0., 1., 30).insert_axis(Axis(1));
        let preds = moe.predict_values(&x).expect("MOE prediction");
        let dpreds = moe.predict_derivatives(&x).expect("MOE drv prediction");
        println!("dpred = {}", dpreds);
        let test_dir = "target/tests";
        std::fs::create_dir_all(test_dir).ok();
        write_npy(format!("{}/x_hard.npy", test_dir), &x).expect("x saved");
        write_npy(format!("{}/preds_hard.npy", test_dir), &preds).expect("preds saved");
        write_npy(format!("{}/dpreds_hard.npy", test_dir), &dpreds).expect("dpreds saved");
        assert_abs_diff_eq!(
            0.39 * 0.39,
            moe.predict_values(&array![[0.39]]).unwrap()[[0, 0]],
            epsilon = 1e-4
        );
        assert_abs_diff_eq!(
            f64::sin(10. * 0.82),
            moe.predict_values(&array![[0.82]]).unwrap()[[0, 0]],
            epsilon = 1e-4
        );
    }

    #[test]
    fn test_moe_smooth() {
        let test_dir = "target/tests";
        let mut rng = Xoshiro256Plus::seed_from_u64(42);
        let xt = Array2::random_using((60, 1), Uniform::new(0., 1.), &mut rng);
        let yt = f_test_1d(&xt);
        let ds = Dataset::new(xt.to_owned(), yt.to_owned());
        let moe = Moe::params()
            .n_clusters(3)
            .recombination(Recombination::Smooth(Some(0.5)))
            .with_rng(rng.clone())
            .fit(&ds)
            .expect("MOE fitted");
        let x = Array1::linspace(0., 1., 100).insert_axis(Axis(1));
        let preds = moe.predict_values(&x).expect("MOE prediction");
        write_npy(format!("{}/xt.npy", test_dir), &xt).expect("x saved");
        write_npy(format!("{}/yt.npy", test_dir), &yt).expect("preds saved");
        write_npy(format!("{}/x_smooth.npy", test_dir), &x).expect("x saved");
        write_npy(format!("{}/preds_smooth.npy", test_dir), &preds).expect("preds saved");

        // Predict with smooth 0.5 which is not good
        println!("Smooth moe {}", moe);
        assert_abs_diff_eq!(
            0.2623, // test we are not good as the true value = 0.37*0.37 = 0.1369
            moe.predict_values(&array![[0.37]]).unwrap()[[0, 0]],
            epsilon = 1e-3
        );

        // Predict with smooth adjusted automatically which is better
        let moe = Moe::params()
            .n_clusters(3)
            .recombination(Recombination::Smooth(None))
            .with_rng(rng.clone())
            .fit(&ds)
            .expect("MOE fitted");
        println!("Smooth moe {}", moe);

        std::fs::create_dir_all(test_dir).ok();
        let x = Array1::linspace(0., 1., 100).insert_axis(Axis(1));
        let preds = moe.predict_values(&x).expect("MOE prediction");
        write_npy(format!("{}/x_smooth2.npy", test_dir), &x).expect("x saved");
        write_npy(format!("{}/preds_smooth2.npy", test_dir), &preds).expect("preds saved");
        assert_abs_diff_eq!(
            0.37 * 0.37, // true value of the function
            moe.predict_values(&array![[0.37]]).unwrap()[[0, 0]],
            epsilon = 1e-3
        );
    }

    #[test]
    fn test_moe_auto() {
        let mut rng = Xoshiro256Plus::seed_from_u64(0);
        let xt = Array2::random_using((100, 1), Uniform::new(0., 1.), &mut rng);
        let yt = f_test_1d(&xt);
        let ds = Dataset::new(xt, yt);
        let moe = Moe::params()
            .n_clusters(0)
            .with_rng(rng.clone())
            .fit(&ds)
            .expect("MOE fitted");
        println!(
            "Moe auto: nb clusters={}, recomb={:?}",
            moe.n_clusters(),
            moe.recombination()
        );
        assert_abs_diff_eq!(
            0.37 * 0.37, // true value of the function
            moe.predict_values(&array![[0.37]]).unwrap()[[0, 0]],
            epsilon = 1e-3
        );
    }

    #[test]
    fn test_moe_variances_smooth() {
        let mut rng = Xoshiro256Plus::seed_from_u64(42);
        let xt = Array2::random_using((100, 1), Uniform::new(0., 1.), &mut rng);
        let yt = f_test_1d(&xt);
        let moe = Moe::params()
            .n_clusters(3)
            .recombination(Recombination::Smooth(None))
            .regression_spec(RegressionSpec::CONSTANT)
            .correlation_spec(CorrelationSpec::SQUAREDEXPONENTIAL)
            .with_rng(rng.clone())
            .fit(&Dataset::new(xt, yt))
            .expect("MOE fitted");
        // Smoke test: prediction is pretty good hence variance is very low
        let x = Array1::linspace(0., 1., 20).insert_axis(Axis(1));
        let variances = moe.predict_variances(&x).expect("MOE variances prediction");
        assert_abs_diff_eq!(*variances.max().unwrap(), 0., epsilon = 1e-10);
    }

    fn xsinx(x: &[f64]) -> f64 {
        (x[0] - 3.5) * f64::sin((x[0] - 3.5) / std::f64::consts::PI)
    }

    #[test]
    fn test_find_best_expert() {
        let mut rng = Xoshiro256Plus::seed_from_u64(0);
        let xt = Array2::random_using((10, 1), Uniform::new(0., 1.), &mut rng);
        let yt = xt.mapv(|x| xsinx(&[x]));
        let data = concatenate(Axis(1), &[xt.view(), yt.view()]).unwrap();
        let moe = Moe::params().with_rng(rng).check_unwrap();
        let best_expert = &moe.find_best_expert(1, &data).unwrap();
        println!("Best expert {}", best_expert);
    }

    #[test]
    fn test_find_best_heaviside_factor() {
        let mut rng = Xoshiro256Plus::seed_from_u64(0);
        let xt = Array2::random_using((50, 1), Uniform::new(0., 1.), &mut rng);
        let yt = f_test_1d(&xt);
        let _moe = Moe::params()
            .n_clusters(3)
            .with_rng(rng)
            .fit(&Dataset::new(xt, yt))
            .expect("MOE fitted");
    }

    #[cfg(feature = "persistent")]
    #[test]
    fn test_save_load_moe() {
        let test_dir = "target/tests";
        std::fs::create_dir_all(test_dir).ok();

        let mut rng = Xoshiro256Plus::seed_from_u64(0);
        let xt = Array2::random_using((50, 1), Uniform::new(0., 1.), &mut rng);
        let yt = f_test_1d(&xt);
        let ds = Dataset::new(xt, yt);
        let moe = Moe::params()
            .n_clusters(3)
            .with_rng(rng)
            .fit(&ds)
            .expect("MOE fitted");
        let xtest = array![[0.6]];
        let y_expected = moe.predict_values(&xtest).unwrap();
        let filename = format!("{}/saved_moe.json", test_dir);
        moe.save(&filename).expect("MoE saving");
        let new_moe = Moe::load(&filename).expect("MoE loading");
        assert_abs_diff_eq!(
            y_expected,
            new_moe.predict_values(&xtest).unwrap(),
            epsilon = 1e-6
        );
    }

    #[test]
    fn test_moe_drv_hard() {
        let rng = Xoshiro256Plus::seed_from_u64(0);
        let xt = Lhs::new(&array![[0., 1.]]).sample(100);
        let yt = f_test_1d(&xt);

        let moe = Moe::params()
            .n_clusters(3)
            .regression_spec(RegressionSpec::CONSTANT)
            .correlation_spec(CorrelationSpec::SQUAREDEXPONENTIAL)
            .recombination(Recombination::Hard)
            .with_rng(rng)
            .fit(&Dataset::new(xt, yt))
            .expect("MOE fitted");
        let x = Array1::linspace(0., 1., 50).insert_axis(Axis(1));
        let preds = moe.predict_values(&x).expect("MOE prediction");
        let dpreds = moe.predict_derivatives(&x).expect("MOE drv prediction");
        println!("dpred = {}", dpreds);

        let test_dir = "target/tests";
        std::fs::create_dir_all(test_dir).ok();
        write_npy(format!("{}/x_hard.npy", test_dir), &x).expect("x saved");
        write_npy(format!("{}/preds_hard.npy", test_dir), &preds).expect("preds saved");
        write_npy(format!("{}/dpreds_hard.npy", test_dir), &dpreds).expect("dpreds saved");

        let mut rng = Xoshiro256Plus::seed_from_u64(42);
        for _ in 0..20 {
            let x1: f64 = rng.gen_range(0.0..1.0);

            if (0.39 < x1 && x1 < 0.41) || (0.79 < x1 && x1 < 0.81) {
                // avoid testing hard on discoontinuity
                continue;
            } else {
                let h = 1e-4;
                let xtest = array![[x1]];

                let x = array![[x1], [x1 + h], [x1 - h]];
                let preds = moe.predict_derivatives(&x).unwrap();
                let fdiff = preds[[1, 0]] - preds[[1, 0]] / 2. * h;

                let drv = moe.predict_derivatives(&xtest).unwrap();
                let df = df_test_1d(&xtest);

                let err = if drv[[0, 0]] < 0.2 {
                    (drv[[0, 0]] - fdiff).abs()
                } else {
                    (drv[[0, 0]] - fdiff).abs() / drv[[0, 0]]
                };
                println!(
                    "Test predicted derivatives at {}: drv {}, true df {}, fdiff {}",
                    xtest, drv, df, fdiff
                );
                assert_abs_diff_eq!(err, 0.0, epsilon = 2e-1);
            }
        }
    }

    fn norm1(x: &Array2<f64>) -> Array2<f64> {
        x.mapv(|v| v.abs())
            .sum_axis(Axis(1))
            .insert_axis(Axis(1))
            .to_owned()
    }

    fn rosenb(x: &Array2<f64>) -> Array2<f64> {
        let mut y: Array2<f64> = Array2::zeros((x.nrows(), 1));
        Zip::from(y.rows_mut())
            .and(x.rows())
            .par_for_each(|mut yi, xi| yi.assign(&array![rosenbrock(&xi.to_vec(), 1., 100.)]));
        y
    }

    #[allow(clippy::excessive_precision)]
    fn test_variance_derivatives(f: fn(&Array2<f64>) -> Array2<f64>) {
        let rng = Xoshiro256Plus::seed_from_u64(0);
        let xt = egobox_doe::FullFactorial::new(&array![[-1., 1.], [-1., 1.]]).sample(100);
        let yt = f(&xt);

        let moe = Moe::params()
            .n_clusters(2)
            .regression_spec(RegressionSpec::CONSTANT)
            .correlation_spec(CorrelationSpec::SQUAREDEXPONENTIAL)
            .recombination(Recombination::Smooth(Some(1.)))
            .with_rng(rng)
            .fit(&Dataset::new(xt, yt))
            .expect("MOE fitted");

        for _ in 0..20 {
            let mut rng = Xoshiro256Plus::seed_from_u64(42);
            let x = Array::random_using((2,), Uniform::new(0., 1.), &mut rng);
            let xa: f64 = x[0];
            let xb: f64 = x[1];
            let e = 1e-4;

            println!("Test derivatives at [{}, {}]", xa, xb);

            let x = array![
                [xa, xb],
                [xa + e, xb],
                [xa - e, xb],
                [xa, xb + e],
                [xa, xb - e]
            ];
            let y_pred = moe.predict_values(&x).unwrap();
            let y_deriv = moe.predict_derivatives(&x).unwrap();

            let diff_g = (y_pred[[1, 0]] - y_pred[[2, 0]]) / (2. * e);
            let diff_d = (y_pred[[3, 0]] - y_pred[[4, 0]]) / (2. * e);

            assert_rel_or_abs_error(y_deriv[[0, 0]], diff_g);
            assert_rel_or_abs_error(y_deriv[[0, 1]], diff_d);

            let y_pred = moe.predict_variances(&x).unwrap();
            let y_deriv = moe.predict_variance_derivatives(&x).unwrap();

            let diff_g = (y_pred[[1, 0]] - y_pred[[2, 0]]) / (2. * e);
            let diff_d = (y_pred[[3, 0]] - y_pred[[4, 0]]) / (2. * e);

            assert_rel_or_abs_error(y_deriv[[0, 0]], diff_g);
            assert_rel_or_abs_error(y_deriv[[0, 1]], diff_d);
        }
    }

    fn assert_rel_or_abs_error(y_deriv: f64, fdiff: f64) {
        println!("analytic deriv = {}, fdiff = {}", y_deriv, fdiff);
        if fdiff.abs() < 1e-2 {
            assert_abs_diff_eq!(y_deriv, 0.0, epsilon = 1e-1); // check absolute when close to zero
        } else {
            let drv_rel_error1 = (y_deriv - fdiff).abs() / fdiff; // check relative
            assert_abs_diff_eq!(drv_rel_error1, 0.0, epsilon = 1e-1);
        }
    }

    #[test]
    fn test_moe_var_deriv_norm1() {
        test_variance_derivatives(norm1);
    }
    #[test]
    fn test_moe_var_deriv_rosenb() {
        test_variance_derivatives(rosenb);
    }
}