1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use crate::*;
use alloc::{format, vec::Vec};

/// 1D geometric type.
pub type GeoVar1 = GeoVar<na::Rotation<f64, 1>, 1>;
/// 2D geometric type.
pub type GeoVar2 = GeoVar<na::UnitComplex<f64>, 2>;
/// 3D geometric type.
pub type GeoVar3 = GeoVar<na::UnitQuaternion<f64>, 3>;

type Sim<R, const D: usize> = na::Similarity<f64, R, D>;

/// Rotation hint for [`GeoVar`].
pub trait RotHint<const D: usize>: na::AbstractRotation<f64, D> + core::fmt::Debug {
    /// Get the rotation matrix.
    fn matrix(self) -> na::SMatrix<f64, D, D>;
}

impl<const D: usize> RotHint<D> for na::Rotation<f64, D> {
    fn matrix(self) -> na::SMatrix<f64, D, D> {
        self.into_inner()
    }
}

impl RotHint<2> for na::UnitComplex<f64> {
    fn matrix(self) -> na::SMatrix<f64, 2, 2> {
        self.to_rotation_matrix().into_inner()
    }
}

impl RotHint<3> for na::UnitQuaternion<f64> {
    fn matrix(self) -> na::SMatrix<f64, 3, 3> {
        self.to_rotation_matrix().into_inner()
    }
}

/// Geometric variables.
///
/// This type record the information of raw coefficients.
#[derive(Clone)]
pub struct GeoVar<R: RotHint<D>, const D: usize> {
    inner: Sim<R, D>,
}

impl<R: RotHint<D>, const D: usize> Default for GeoVar<R, D> {
    fn default() -> Self {
        Self { inner: Sim::identity() }
    }
}

impl<R, const D: usize> core::fmt::Debug for GeoVar<R, D>
where
    R: RotHint<D>,
{
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct(&format!("GeoVar{D}"))
            .field("translation", &self.trans())
            .field("rotation", self.rot())
            .field("scale", &self.scale())
            .finish()
    }
}

impl<R, const D: usize> GeoVar<R, D>
where
    R: RotHint<D>,
{
    /// Create a new transform type.
    #[must_use]
    pub fn new(trans: Coord<D>, rot: R, scale: f64) -> Self {
        Self { inner: Sim::from_parts(trans.into(), rot, scale) }
    }

    /// Create with identity matrix.
    #[must_use]
    pub fn identity() -> Self {
        Self::default()
    }

    /// Transform a point.
    ///
    /// Please see [`GeoVar::transform()`] for more information.
    #[must_use]
    pub fn transform_pt(&self, p: Coord<D>) -> Coord<D> {
        self.inner.transform_point(&na::Point::from(p)).into()
    }

    /// Transform a contour with this information.
    ///
    /// This function rotates first, then translates.
    ///
    /// ```
    /// use efd::{tests::*, *};
    /// # let target = TARGET;
    /// # let efd = Efd2::from_curve(PATH, false);
    /// # let path = efd.generate_norm(target.len());
    /// let path1 = efd.as_geo().transform(&path);
    /// # let geo = efd.as_geo();
    /// let path1_inv = geo.inverse().transform(&path1);
    /// # assert!(curve_diff(&path1, TARGET) < EPS);
    /// # assert!(curve_diff(&path1_inv, &path) < EPS);
    /// ```
    #[must_use]
    pub fn transform<C>(&self, curve: C) -> Vec<Coord<D>>
    where
        C: AsRef<[Coord<D>]>,
    {
        curve
            .as_ref()
            .iter()
            .map(|c| self.transform_pt(*c))
            .collect()
    }

    /// Transform a contour in-placed with this information.
    pub fn transform_inplace<C>(&self, mut curve: C)
    where
        C: AsMut<[Coord<D>]>,
    {
        curve
            .as_mut()
            .iter_mut()
            .for_each(|c| *c = self.transform_pt(*c));
    }

    /// Transform an iterator contour.
    pub fn transform_iter<'a, C>(&'a self, curve: C) -> impl Iterator<Item = Coord<D>> + 'a
    where
        C: IntoIterator<Item = Coord<D>> + 'a,
    {
        curve.into_iter().map(|c| self.transform_pt(c))
    }

    /// Merge inverse `self` and `rhs` matrices.
    ///
    /// It can be used on a not normalized contour `a` transforming to `b`.
    ///
    /// ```
    /// use efd::{tests::*, Efd2};
    /// # use efd::Curve as _;
    /// # let path1 = PATH;
    /// # let path2 = PATH;
    ///
    /// let a = Efd2::from_curve(path1, false);
    /// let b = Efd2::from_curve(path2, false);
    /// let geo = a.as_geo().to(b.as_geo());
    /// assert!(curve_diff(&geo.transform(path1), path2) < EPS);
    /// ```
    #[must_use]
    pub fn to(&self, rhs: &Self) -> Self {
        self.inverse().apply(rhs)
    }

    /// Merge two matrices.
    ///
    /// Same as `rhs * self`.
    ///
    /// ```
    /// use efd::{tests::*, Efd2};
    /// # use efd::Curve as _;
    /// # let path1 = PATH;
    /// # let path2 = PATH;
    ///
    /// let a = Efd2::from_curve(path1, false);
    /// let b = Efd2::from_curve(path2, false);
    /// let geo = b.as_geo() * a.as_geo().inverse();
    /// assert!(curve_diff(&geo.transform(path1), path2) < EPS);
    /// ```
    #[must_use]
    pub fn apply(&self, rhs: &Self) -> Self {
        Self { inner: &rhs.inner * &self.inner }
    }

    /// Inverse matrices.
    ///
    /// ```
    /// use efd::{tests::*, Efd2};
    /// # use efd::Curve as _;
    /// # let path = PATH;
    ///
    /// let efd = Efd2::from_curve(path, false);
    /// let path = efd.generate(path.len());
    /// let path_norm = efd.generate_norm(path.len());
    /// let path = efd.as_geo().inverse().transform(path);
    /// # assert!(curve_diff(&path, &path_norm) < EPS);
    /// ```
    #[must_use]
    pub fn inverse(&self) -> Self {
        Self { inner: self.inner.inverse() }
    }

    /// Translate property.
    #[must_use]
    pub fn trans(&self) -> Coord<D> {
        self.inner.isometry.translation.vector.data.0[0]
    }

    /// Rotation property.
    #[must_use]
    pub fn rot(&self) -> &R {
        &self.inner.isometry.rotation
    }

    /// Scaling property.
    #[must_use]
    pub fn scale(&self) -> f64 {
        self.inner.scaling()
    }
}

macro_rules! impl_mul {
    ($ty1:ty, $ty2:ty) => {
        impl<R, const D: usize> core::ops::Mul<$ty2> for $ty1
        where
            R: RotHint<D>,
        {
            type Output = GeoVar<R, D>;
            #[must_use]
            fn mul(self, rhs: $ty2) -> Self::Output {
                GeoVar { inner: &self.inner * &rhs.inner }
            }
        }
    };
}

impl_mul!(GeoVar<R, D>, Self);
impl_mul!(&GeoVar<R, D>, Self);
impl_mul!(GeoVar<R, D>, &Self);
impl_mul!(&GeoVar<R, D>, GeoVar<R, D>);