use crate::{CoordHint, EfdDim, Trans};
use alloc::vec::Vec;
pub type Coord<D> = <<D as EfdDim>::Trans as Trans>::Coord;
pub(crate) type MatrixRxX<R> = na::OMatrix<f64, R, na::Dyn>;
pub(crate) fn to_mat<A, C>(curve: C) -> MatrixRxX<A::Dim>
where
A: CoordHint,
C: Curve<A>,
{
let curve = curve.to_curve();
MatrixRxX::<A::Dim>::from_iterator(curve.len(), curve.into_iter().flat_map(A::flat))
}
pub trait Curve<A: Clone>: Sized {
#[must_use]
fn to_curve(self) -> Vec<A>;
#[must_use]
fn as_curve(&self) -> &[A];
#[must_use]
fn closed_lin(self) -> Vec<A> {
let mut c = self.to_curve();
c.push(c[0].clone());
c
}
#[must_use]
fn pop_last(self) -> Vec<A> {
let mut curve = self.to_curve();
curve.pop();
curve
}
#[must_use]
fn is_closed(&self) -> bool
where
A: PartialEq,
{
let curve = self.as_curve();
match (curve.first(), curve.last()) {
(Some(a), Some(b)) => a == b,
_ => false,
}
}
}
impl<A: Clone> Curve<A> for Vec<A> {
fn to_curve(self) -> Vec<A> {
self
}
fn as_curve(&self) -> &[A] {
self
}
}
macro_rules! impl_slice {
() => {
fn to_curve(self) -> Vec<A> {
self.to_vec()
}
fn as_curve(&self) -> &[A] {
self
}
};
}
impl<A: Clone, const N: usize> Curve<A> for [A; N] {
impl_slice!();
}
impl<A: Clone> Curve<A> for &[A] {
impl_slice!();
}
impl<A: Clone> Curve<A> for alloc::borrow::Cow<'_, [A]> {
impl_slice!();
}
impl<A: Clone, T: Curve<A> + Clone> Curve<A> for &T {
fn to_curve(self) -> Vec<A> {
self.clone().to_curve()
}
fn as_curve(&self) -> &[A] {
(*self).as_curve()
}
}