# edgefirst-tensor
[](https://crates.io/crates/edgefirst-tensor)
[](https://docs.rs/edgefirst-tensor)
[](LICENSE)
**Zero-copy tensor memory management for edge AI applications.**
This crate provides a unified interface for managing multi-dimensional arrays (tensors) with support for different memory backends optimized for ML inference pipelines.
## Memory Types
| **DMA** | Linux DMA-BUF allocation | Hardware accelerators (GPU, NPU, video codecs) |
| **SHM** | POSIX shared memory | Inter-process communication, zero-copy IPC |
| **Mem** | Standard heap allocation | General purpose, maximum compatibility |
## Features
- **Automatic memory selection** - Tries DMA → SHM → Mem based on availability
- **Zero-copy sharing** - Share tensors between processes via file descriptors
- **Memory mapping** - Efficient CPU access to tensor data
- **ndarray integration** - Optional conversion to/from `ndarray::Array` (feature: `ndarray`)
## Quick Start
```rust
use edgefirst_tensor::{Tensor, TensorMemory, TensorTrait, TensorMapTrait};
// Create a tensor with automatic memory selection
let tensor = Tensor::<f32>::new(&[1, 3, 224, 224], None, None)?;
println!("Memory type: {:?}", tensor.memory());
// Create with explicit memory type
let dma_tensor = Tensor::<u8>::new(&[1920, 1080, 4], Some(TensorMemory::Dma), None)?;
// Map tensor for CPU access
let mut map = tensor.map()?;
map.as_mut_slice().fill(0.0);
// Share via file descriptor (Unix only)
#[cfg(unix)]
let fd = tensor.clone_fd()?;
```
## Platform Support
| Linux | Yes | Yes | Yes |
| macOS | No | Yes | Yes |
| Other Unix | No | Yes | Yes |
| Windows | No | No | Yes |
## Feature Flags
- `ndarray` (default) - Enable `ndarray` integration for array conversions
## Environment Variables
- `EDGEFIRST_TENSOR_FORCE_MEM` - Set to `1` or `true` to force heap allocation
## License
Licensed under the Apache License, Version 2.0. See [LICENSE](https://github.com/EdgeFirstAI/hal/blob/main/LICENSE) for details.