1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
use super::beam_search::BeamSearchParameters;
use super::data_structure::{exceed_bound, HashableSignatureVariables};
use super::search::{Parameters, Search, SearchInput, Solution};
use super::util::print_primal_bound;
use super::util::{update_bound_if_better, TimeKeeper};
use dypdl::{variable_type, Model, Transition, TransitionInterface};
use std::error::Error;
use std::fmt;
use std::fmt::Debug;
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::Deref;
use std::rc::Rc;
use std::str;
/// Parameters for CABS.
#[derive(Debug, PartialEq, Clone, Copy, Default)]
pub struct CabsParameters<T> {
/// Maximum beam size.
pub max_beam_size: Option<usize>,
/// Parameters for beam search.
pub beam_search_parameters: BeamSearchParameters<T>,
}
/// Complete Anytime Beam Search (CABS).
///
/// It iterates beam search with exponentially increasing beam width.
///
/// This solver uses forward search based on the shortest path problem.
/// It only works with problems where the cost expressions are in the form of `cost + w`, `cost * w`, `max(cost, w)`, or `min(cost, w)`
/// where `cost` is `IntegerExpression::Cost`or `ContinuousExpression::Cost` and `w` is a numeric expression independent of `cost`.
///
/// Type parameter `B` is a type of a function that performs beam search.
/// The function takes a `SearchInput` and `BeamSearchParameters` and returns a `Solution`.
///
/// # References
///
/// Ryo Kuroiwa and J. Christopher Beck. "Solving Domain-Independent Dynamic Programming with Anytime Heuristic Search,"
/// Proceedings of the 33rd International Conference on Automated Planning and Scheduling (ICAPS), pp. 245-253, 2023.
///
/// Weixiong Zhang. "Complete Anytime Beam Search,"
/// Proceedings of the 15th National Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 425-430, 1998.
///
/// # Examples
///
/// ```
/// use dypdl::prelude::*;
/// use dypdl_heuristic_search::Search;
/// use dypdl_heuristic_search::search_algorithm::{
/// beam_search, BeamSearchParameters, Cabs, CabsParameters, FNode, SearchInput,
/// SuccessorGenerator,
/// };
/// use std::rc::Rc;
///
/// let mut model = Model::default();
/// let variable = model.add_integer_variable("variable", 0).unwrap();
/// model.add_base_case(
/// vec![Condition::comparison_i(ComparisonOperator::Ge, variable, 1)]
/// ).unwrap();
/// let mut increment = Transition::new("increment");
/// increment.set_cost(IntegerExpression::Cost + 1);
/// increment.add_effect(variable, variable + 1).unwrap();
/// model.add_forward_transition(increment.clone()).unwrap();
/// let model = Rc::new(model);
///
/// let state = model.target.clone();
/// let cost = 0;
/// let h_evaluator = |_: &_| Some(0);
/// let f_evaluator = |g, h, _: &_| g + h;
/// let primal_bound = None;
/// let node = FNode::generate_root_node(
/// state,
/// cost,
/// &model,
/// &h_evaluator,
/// &f_evaluator,
/// primal_bound,
/// );
/// let generator = SuccessorGenerator::<Transition>::from_model(model.clone(), false);
/// let transition_evaluator = move |node: &FNode<_>, transition, primal_bound| {
/// node.generate_successor_node(
/// transition,
/// &model,
/// &h_evaluator,
/// &f_evaluator,
/// primal_bound,
/// )
/// };
/// let base_cost_evaluator = |cost, base_cost| cost + base_cost;
/// let beam_search = move |input: &SearchInput<_, _>, parameters| {
/// beam_search(input, &transition_evaluator, base_cost_evaluator, parameters)
/// };
/// let parameters = CabsParameters::default();
/// let input = SearchInput {
/// node,
/// generator,
/// solution_suffix: &[],
/// };
///
/// let mut solver = Cabs::<_, FNode<_>, _>::new(input, beam_search, parameters);
/// let solution = solver.search().unwrap();
/// assert_eq!(solution.cost, Some(1));
/// assert_eq!(solution.transitions, vec![increment]);
/// assert!(!solution.is_infeasible);
/// ```
pub struct Cabs<
'a,
T,
N,
B,
V = Transition,
D = Rc<V>,
R = Rc<Model>,
K = Rc<HashableSignatureVariables>,
> where
T: variable_type::Numeric + fmt::Display,
<T as str::FromStr>::Err: fmt::Debug,
B: FnMut(&SearchInput<N, V, D, R>, BeamSearchParameters<T>) -> Solution<T, V>,
V: TransitionInterface + Clone + Default,
Transition: From<V>,
D: Deref<Target = V> + Clone,
R: Deref<Target = Model> + Clone,
K: Hash + Eq + Clone + Debug,
{
input: SearchInput<'a, N, V, D, R>,
beam_search: B,
keep_all_layers: bool,
primal_bound: Option<T>,
quiet: bool,
beam_size: usize,
max_beam_size: Option<usize>,
time_keeper: TimeKeeper,
solution: Solution<T, V>,
phantom: PhantomData<K>,
}
impl<'a, T, N, B, V, D, R, K> Cabs<'a, T, N, B, V, D, R, K>
where
T: variable_type::Numeric + fmt::Display,
<T as str::FromStr>::Err: fmt::Debug,
B: FnMut(&SearchInput<N, V, D, R>, BeamSearchParameters<T>) -> Solution<T, V>,
V: TransitionInterface + Clone + Default,
Transition: From<V>,
D: Deref<Target = V> + Clone,
R: Deref<Target = Model> + Clone,
K: Hash + Eq + Clone + Debug,
{
/// Create a new CABS solver.
pub fn new(
input: SearchInput<'a, N, V, D, R>,
beam_search: B,
parameters: CabsParameters<T>,
) -> Cabs<'a, T, N, B, V, D, R, K> {
let mut time_keeper = parameters
.beam_search_parameters
.parameters
.time_limit
.map_or_else(TimeKeeper::default, TimeKeeper::with_time_limit);
time_keeper.stop();
Cabs {
input,
beam_search,
keep_all_layers: parameters.beam_search_parameters.keep_all_layers,
primal_bound: parameters.beam_search_parameters.parameters.primal_bound,
quiet: parameters.beam_search_parameters.parameters.quiet,
beam_size: parameters.beam_search_parameters.beam_size,
max_beam_size: parameters.max_beam_size,
time_keeper,
solution: Solution::default(),
phantom: PhantomData,
}
}
//// Search for the next solution, returning the solution without converting it into `Transition`.
pub fn search_inner(&mut self) -> (Solution<T, V>, bool) {
self.time_keeper.start();
let model = &self.input.generator.model;
while !self.solution.is_terminated() {
let last = self.max_beam_size.map_or(false, |max_beam_size| {
if self.beam_size >= max_beam_size {
self.beam_size = max_beam_size;
if !self.quiet {
println!("Reached the maximum beam size.");
}
true
} else {
false
}
});
let parameters = BeamSearchParameters {
beam_size: self.beam_size,
keep_all_layers: self.keep_all_layers,
parameters: Parameters {
primal_bound: self.primal_bound,
get_all_solutions: false,
quiet: true,
time_limit: self.time_keeper.remaining_time_limit(),
..Default::default()
},
};
let result = (self.beam_search)(&self.input, parameters);
self.solution.expanded += result.expanded;
self.solution.generated += result.generated;
if !self.quiet {
println!(
"Searched with beam size: {}, expanded: {}, elapsed time: {}",
self.beam_size,
self.solution.expanded,
self.time_keeper.elapsed_time()
);
}
self.beam_size *= 2;
if let Some(bound) = result.best_bound {
self.solution.time = self.time_keeper.elapsed_time();
update_bound_if_better(&mut self.solution, bound, model, self.quiet);
}
if let Some(cost) = result.cost {
if !exceed_bound(model, cost, self.primal_bound) {
self.primal_bound = Some(cost);
self.solution.cost = Some(cost);
self.solution.transitions = result.transitions;
self.solution.is_optimal = result.is_optimal;
self.solution.time = self.time_keeper.elapsed_time();
if self.solution.is_optimal {
self.solution.best_bound = Some(cost);
}
if !self.quiet {
print_primal_bound(&self.solution);
}
self.time_keeper.stop();
return (self.solution.clone(), self.solution.is_optimal || last);
}
} else if result.is_infeasible {
self.solution.is_optimal = self.solution.cost.is_some();
self.solution.is_infeasible = self.solution.cost.is_none();
self.solution.best_bound = self.solution.cost;
}
if last {
break;
}
if result.time_out {
if !self.quiet {
println!("Reached time limit.");
}
self.solution.time_out = true;
}
}
self.solution.time = self.time_keeper.elapsed_time();
self.time_keeper.stop();
(self.solution.clone(), true)
}
}
impl<'a, T, N, B, V, D, R, K> Search<T> for Cabs<'a, T, N, B, V, D, R, K>
where
T: variable_type::Numeric + fmt::Display + Ord,
<T as str::FromStr>::Err: fmt::Debug,
B: FnMut(&SearchInput<N, V, D, R>, BeamSearchParameters<T>) -> Solution<T, V>,
V: TransitionInterface + Clone + Default,
Transition: From<V>,
D: Deref<Target = V> + Clone,
R: Deref<Target = Model> + Clone,
K: Hash + Eq + Clone + Debug,
{
fn search_next(&mut self) -> Result<(Solution<T>, bool), Box<dyn Error>> {
let (solution, is_terminated) = self.search_inner();
let solution = Solution {
cost: solution.cost,
best_bound: solution.best_bound,
is_optimal: solution.is_optimal,
is_infeasible: solution.is_infeasible,
transitions: solution
.transitions
.into_iter()
.map(dypdl::Transition::from)
.collect(),
expanded: solution.expanded,
generated: solution.generated,
time: solution.time,
time_out: solution.time_out,
};
Ok((solution, is_terminated))
}
}