1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
use super::beam_search::BeamSearchParameters;
use super::data_structure::{exceed_bound, HashableSignatureVariables};
use super::search::{Parameters, Search, SearchInput, Solution};
use super::util::print_primal_bound;
use super::util::{update_bound_if_better, TimeKeeper};
use dypdl::{variable_type, Model, Transition, TransitionInterface};
use std::error::Error;
use std::fmt;
use std::fmt::Debug;
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::Deref;
use std::rc::Rc;
use std::str;

/// Parameters for CABS.
#[derive(Debug, PartialEq, Clone, Copy, Default)]
pub struct CabsParameters<T> {
    /// Maximum beam size.
    pub max_beam_size: Option<usize>,
    /// Parameters for beam search.
    pub beam_search_parameters: BeamSearchParameters<T>,
}

/// Complete Anytime Beam Search (CABS).
///
/// It iterates beam search with exponentially increasing beam width.
///
/// This solver uses forward search based on the shortest path problem.
/// It only works with problems where the cost expressions are in the form of `cost + w`, `cost * w`, `max(cost, w)`, or `min(cost, w)`
/// where `cost` is `IntegerExpression::Cost`or `ContinuousExpression::Cost` and `w` is a numeric expression independent of `cost`.
///
/// Type parameter `B` is a type of a function that performs beam search.
/// The function takes a `SearchInput` and `BeamSearchParameters` and returns a `Solution`.
///
/// # References
///
/// Ryo Kuroiwa and J. Christopher Beck. "Solving Domain-Independent Dynamic Programming with Anytime Heuristic Search,"
/// Proceedings of the 33rd International Conference on Automated Planning and Scheduling (ICAPS), pp. 245-253, 2023.
///
/// Weixiong Zhang. "Complete Anytime Beam Search,"
/// Proceedings of the 15th National Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 425-430, 1998.
///
/// # Examples
///
/// ```
/// use dypdl::prelude::*;
/// use dypdl_heuristic_search::Search;
/// use dypdl_heuristic_search::search_algorithm::{
///     beam_search, BeamSearchParameters, Cabs, CabsParameters, FNode, SearchInput,
///     SuccessorGenerator,
/// };
/// use std::rc::Rc;
///
/// let mut model = Model::default();
/// let variable = model.add_integer_variable("variable", 0).unwrap();
/// model.add_base_case(
///     vec![Condition::comparison_i(ComparisonOperator::Ge, variable, 1)]
/// ).unwrap();
/// let mut increment = Transition::new("increment");
/// increment.set_cost(IntegerExpression::Cost + 1);
/// increment.add_effect(variable, variable + 1).unwrap();
/// model.add_forward_transition(increment.clone()).unwrap();
/// let model = Rc::new(model);
///
/// let state = model.target.clone();
/// let cost = 0;
/// let h_evaluator = |_: &_| Some(0);
/// let f_evaluator = |g, h, _: &_| g + h;
/// let primal_bound = None;
/// let node = FNode::generate_root_node(
///     state,
///     cost,
///     &model,
///     &h_evaluator,
///     &f_evaluator,
///     primal_bound,
/// );
/// let generator = SuccessorGenerator::<Transition>::from_model(model.clone(), false);
/// let transition_evaluator = move |node: &FNode<_>, transition, primal_bound| {
///     node.generate_successor_node(
///         transition,
///         &model,
///         &h_evaluator,
///         &f_evaluator,
///         primal_bound,
///     )
/// };
/// let base_cost_evaluator = |cost, base_cost| cost + base_cost;
/// let beam_search = move |input: &SearchInput<_, _>, parameters| {
///     beam_search(input, &transition_evaluator, base_cost_evaluator, parameters)
/// };
/// let parameters = CabsParameters::default();
/// let input = SearchInput {
///     node,
///     generator,
///     solution_suffix: &[],
/// };
///
/// let mut solver = Cabs::<_, FNode<_>, _>::new(input, beam_search, parameters);
/// let solution = solver.search().unwrap();
/// assert_eq!(solution.cost, Some(1));
/// assert_eq!(solution.transitions, vec![increment]);
/// assert!(!solution.is_infeasible);
/// ```
pub struct Cabs<
    'a,
    T,
    N,
    B,
    V = Transition,
    D = Rc<V>,
    R = Rc<Model>,
    K = Rc<HashableSignatureVariables>,
> where
    T: variable_type::Numeric + fmt::Display,
    <T as str::FromStr>::Err: fmt::Debug,
    B: FnMut(&SearchInput<N, V, D, R>, BeamSearchParameters<T>) -> Solution<T, V>,
    V: TransitionInterface + Clone + Default,
    Transition: From<V>,
    D: Deref<Target = V> + Clone,
    R: Deref<Target = Model> + Clone,
    K: Hash + Eq + Clone + Debug,
{
    input: SearchInput<'a, N, V, D, R>,
    beam_search: B,
    keep_all_layers: bool,
    primal_bound: Option<T>,
    quiet: bool,
    beam_size: usize,
    max_beam_size: Option<usize>,
    time_keeper: TimeKeeper,
    solution: Solution<T, V>,
    phantom: PhantomData<K>,
}

impl<'a, T, N, B, V, D, R, K> Cabs<'a, T, N, B, V, D, R, K>
where
    T: variable_type::Numeric + fmt::Display,
    <T as str::FromStr>::Err: fmt::Debug,
    B: FnMut(&SearchInput<N, V, D, R>, BeamSearchParameters<T>) -> Solution<T, V>,
    V: TransitionInterface + Clone + Default,
    Transition: From<V>,
    D: Deref<Target = V> + Clone,
    R: Deref<Target = Model> + Clone,
    K: Hash + Eq + Clone + Debug,
{
    /// Create a new CABS solver.
    pub fn new(
        input: SearchInput<'a, N, V, D, R>,
        beam_search: B,
        parameters: CabsParameters<T>,
    ) -> Cabs<'a, T, N, B, V, D, R, K> {
        let mut time_keeper = parameters
            .beam_search_parameters
            .parameters
            .time_limit
            .map_or_else(TimeKeeper::default, TimeKeeper::with_time_limit);
        time_keeper.stop();

        Cabs {
            input,
            beam_search,
            keep_all_layers: parameters.beam_search_parameters.keep_all_layers,
            primal_bound: parameters.beam_search_parameters.parameters.primal_bound,
            quiet: parameters.beam_search_parameters.parameters.quiet,
            beam_size: parameters.beam_search_parameters.beam_size,
            max_beam_size: parameters.max_beam_size,
            time_keeper,
            solution: Solution::default(),
            phantom: PhantomData,
        }
    }

    //// Search for the next solution, returning the solution without converting it into `Transition`.
    pub fn search_inner(&mut self) -> (Solution<T, V>, bool) {
        self.time_keeper.start();
        let model = &self.input.generator.model;

        while !self.solution.is_terminated() {
            let last = self.max_beam_size.map_or(false, |max_beam_size| {
                if self.beam_size >= max_beam_size {
                    self.beam_size = max_beam_size;

                    if !self.quiet {
                        println!("Reached the maximum beam size.");
                    }

                    true
                } else {
                    false
                }
            });

            let parameters = BeamSearchParameters {
                beam_size: self.beam_size,
                keep_all_layers: self.keep_all_layers,
                parameters: Parameters {
                    primal_bound: self.primal_bound,
                    get_all_solutions: false,
                    quiet: true,
                    time_limit: self.time_keeper.remaining_time_limit(),
                    ..Default::default()
                },
            };
            let result = (self.beam_search)(&self.input, parameters);
            self.solution.expanded += result.expanded;
            self.solution.generated += result.generated;

            if !self.quiet {
                println!(
                    "Searched with beam size: {}, expanded: {}, elapsed time: {}",
                    self.beam_size,
                    self.solution.expanded,
                    self.time_keeper.elapsed_time()
                );
            }

            self.beam_size *= 2;

            if let Some(bound) = result.best_bound {
                self.solution.time = self.time_keeper.elapsed_time();
                update_bound_if_better(&mut self.solution, bound, model, self.quiet);
            }

            if let Some(cost) = result.cost {
                if !exceed_bound(model, cost, self.primal_bound) {
                    self.primal_bound = Some(cost);
                    self.solution.cost = Some(cost);
                    self.solution.transitions = result.transitions;
                    self.solution.is_optimal = result.is_optimal;
                    self.solution.time = self.time_keeper.elapsed_time();

                    if self.solution.is_optimal {
                        self.solution.best_bound = Some(cost);
                    }

                    if !self.quiet {
                        print_primal_bound(&self.solution);
                    }

                    self.time_keeper.stop();

                    return (self.solution.clone(), self.solution.is_optimal || last);
                }
            } else if result.is_infeasible {
                self.solution.is_optimal = self.solution.cost.is_some();
                self.solution.is_infeasible = self.solution.cost.is_none();
                self.solution.best_bound = self.solution.cost;
            }

            if last {
                break;
            }

            if result.time_out {
                if !self.quiet {
                    println!("Reached time limit.");
                }

                self.solution.time_out = true;
            }
        }

        self.solution.time = self.time_keeper.elapsed_time();
        self.time_keeper.stop();
        (self.solution.clone(), true)
    }
}

impl<'a, T, N, B, V, D, R, K> Search<T> for Cabs<'a, T, N, B, V, D, R, K>
where
    T: variable_type::Numeric + fmt::Display + Ord,
    <T as str::FromStr>::Err: fmt::Debug,
    B: FnMut(&SearchInput<N, V, D, R>, BeamSearchParameters<T>) -> Solution<T, V>,
    V: TransitionInterface + Clone + Default,
    Transition: From<V>,
    D: Deref<Target = V> + Clone,
    R: Deref<Target = Model> + Clone,
    K: Hash + Eq + Clone + Debug,
{
    fn search_next(&mut self) -> Result<(Solution<T>, bool), Box<dyn Error>> {
        let (solution, is_terminated) = self.search_inner();
        let solution = Solution {
            cost: solution.cost,
            best_bound: solution.best_bound,
            is_optimal: solution.is_optimal,
            is_infeasible: solution.is_infeasible,
            transitions: solution
                .transitions
                .into_iter()
                .map(dypdl::Transition::from)
                .collect(),
            expanded: solution.expanded,
            generated: solution.generated,
            time: solution.time,
            time_out: solution.time_out,
        };

        Ok((solution, is_terminated))
    }
}