dsrs 0.6.1

Rusty wrapper for Apache DataSketches
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

// author Kevin Lang, Oath Research

#ifndef CPC_COMPRESSOR_IMPL_HPP_
#define CPC_COMPRESSOR_IMPL_HPP_

#include <memory>

#include "compression_data.hpp"
#include "cpc_util.hpp"
#include "cpc_common.hpp"
#include "count_zeros.hpp"

namespace datasketches {

// construct on first use
template<typename A>
cpc_compressor<A>& get_compressor() {
  static cpc_compressor<A>* instance = new cpc_compressor<A>(); // use new for global initialization
  return *instance;
}

template<typename A>
cpc_compressor<A>::cpc_compressor() {
  make_decoding_tables();
}

template<typename A>
cpc_compressor<A>::~cpc_compressor() {
  free_decoding_tables();
}

template<typename A>
uint8_t* cpc_compressor<A>::make_inverse_permutation(const uint8_t* permu, unsigned length) {
  uint8_t* inverse = new uint8_t[length]; // use new for global initialization
  for (unsigned i = 0; i < length; i++) {
    inverse[permu[i]] = static_cast<uint8_t>(i);
  }
  for (unsigned i = 0; i < length; i++) {
    if (permu[inverse[i]] != i) throw std::logic_error("inverse permutation error");
  }
  return inverse;
}

/* Given an encoding table that maps unsigned bytes to codewords
   of length at most 12, this builds a size-4096 decoding table */
// The second argument is typically 256, but can be other values such as 65.
template<typename A>
uint16_t* cpc_compressor<A>::make_decoding_table(const uint16_t* encoding_table, unsigned num_byte_values) {
  uint16_t* decoding_table = new uint16_t[4096]; // use new for global initialization
  for (unsigned byte_value = 0; byte_value < num_byte_values; byte_value++) {
    const uint16_t encoding_entry = encoding_table[byte_value];
    const uint16_t code_value = encoding_entry & 0xfff;
    const uint8_t code_length = encoding_entry >> 12;
    const uint16_t decoding_entry = static_cast<uint16_t>((code_length << 8) | byte_value);
    const uint8_t garbage_length = 12 - code_length;
    const uint32_t num_copies = 1 << garbage_length;
    for (uint32_t garbage_bits = 0; garbage_bits < num_copies; garbage_bits++) {
      const uint16_t extended_code_value = static_cast<uint16_t>(code_value | (garbage_bits << code_length));
      decoding_table[extended_code_value & 0xfff] = decoding_entry;
    }
  }
  return decoding_table;
}

template<typename A>
void cpc_compressor<A>::validate_decoding_table(const uint16_t* decoding_table, const uint16_t* encoding_table) const {
  for (int decode_this = 0; decode_this < 4096; decode_this++) {
    const int tmp_d = decoding_table[decode_this];
    const int decoded_byte = tmp_d & 0xff;
    const int decoded_length = tmp_d >> 8;

    const int tmp_e = encoding_table[decoded_byte];
    const int encoded_bit_pattern = tmp_e & 0xfff;
    const int encoded_length = tmp_e >> 12;

    if (decoded_length != encoded_length) throw std::logic_error("decoded length error");
    if (encoded_bit_pattern != (decode_this & ((1 << decoded_length) - 1))) throw std::logic_error("bit pattern error");
  }
}

template<typename A>
void cpc_compressor<A>::make_decoding_tables() {
  length_limited_unary_decoding_table65 = make_decoding_table(length_limited_unary_encoding_table65, 65);
  validate_decoding_table(
      length_limited_unary_decoding_table65,
      length_limited_unary_encoding_table65
  );

  for (int i = 0; i < (16 + 6); i++) {
    decoding_tables_for_high_entropy_byte[i] = make_decoding_table(encoding_tables_for_high_entropy_byte[i], 256);
    validate_decoding_table(
        decoding_tables_for_high_entropy_byte[i],
        encoding_tables_for_high_entropy_byte[i]
    );
  }

  for (int i = 0; i < 16; i++) {
    column_permutations_for_decoding[i] = make_inverse_permutation(column_permutations_for_encoding[i], 56);
  }
}

template<typename A>
void cpc_compressor<A>::free_decoding_tables() {
  delete[] length_limited_unary_decoding_table65;
  for (int i = 0; i < (16 + 6); i++) {
    delete[] decoding_tables_for_high_entropy_byte[i];
  }
  for (int i = 0; i < 16; i++) {
    delete[] column_permutations_for_decoding[i];
  }
}

template<typename A>
void cpc_compressor<A>::compress(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
  switch (source.determine_flavor()) {
    case cpc_sketch_alloc<A>::flavor::EMPTY:
      break;
    case cpc_sketch_alloc<A>::flavor::SPARSE:
      compress_sparse_flavor(source, result);
      if (result.window_data.size() > 0) throw std::logic_error("window is not expected");
      if (result.table_data.size() == 0) throw std::logic_error("table is expected");
      break;
    case cpc_sketch_alloc<A>::flavor::HYBRID:
      compress_hybrid_flavor(source, result);
      if (result.window_data.size() > 0) throw std::logic_error("window is not expected");
      if (result.table_data.size() == 0) throw std::logic_error("table is expected");
      break;
    case cpc_sketch_alloc<A>::flavor::PINNED:
      compress_pinned_flavor(source, result);
      if (result.window_data.size() == 0) throw std::logic_error("window is not expected");
      break;
    case cpc_sketch_alloc<A>::flavor::SLIDING:
      compress_sliding_flavor(source, result);
      if (result.window_data.size() == 0) throw std::logic_error("window is expected");
      break;
    default: throw std::logic_error("Unknown sketch flavor");
  }
}

template<typename A>
void cpc_compressor<A>::uncompress(const compressed_state<A>& source, uncompressed_state<A>& target, uint8_t lg_k, uint32_t num_coupons) const {
  switch (cpc_sketch_alloc<A>::determine_flavor(lg_k, num_coupons)) {
    case cpc_sketch_alloc<A>::flavor::EMPTY:
      target.table = u32_table<A>(2, 6 + lg_k, source.table_data.get_allocator());
      break;
    case cpc_sketch_alloc<A>::flavor::SPARSE:
      uncompress_sparse_flavor(source, target, lg_k);
      break;
    case cpc_sketch_alloc<A>::flavor::HYBRID:
      uncompress_hybrid_flavor(source, target, lg_k);
      break;
    case cpc_sketch_alloc<A>::flavor::PINNED:
      if (source.window_data.size() == 0) throw std::logic_error("window is expected");
      uncompress_pinned_flavor(source, target, lg_k, num_coupons);
      break;
    case cpc_sketch_alloc<A>::flavor::SLIDING:
      uncompress_sliding_flavor(source, target, lg_k, num_coupons);
      break;
    default: std::logic_error("Unknown sketch flavor");
  }
}

template<typename A>
void cpc_compressor<A>::compress_sparse_flavor(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
  if (source.sliding_window.size() > 0) throw std::logic_error("unexpected sliding window");
  vector_u32<A> pairs = source.surprising_value_table.unwrapping_get_items();
  u32_table<A>::introspective_insertion_sort(pairs.data(), 0, pairs.size());
  compress_surprising_values(pairs, source.get_lg_k(), result);
}

template<typename A>
void cpc_compressor<A>::uncompress_sparse_flavor(const compressed_state<A>& source, uncompressed_state<A>& target, uint8_t lg_k) const {
  if (source.window_data.size() > 0) throw std::logic_error("unexpected sliding window");
  if (source.table_data.size() == 0) throw std::logic_error("table is expected");
  vector_u32<A> pairs = uncompress_surprising_values(source.table_data.data(), source.table_data_words, source.table_num_entries,
      lg_k, source.table_data.get_allocator());
  target.table = u32_table<A>::make_from_pairs(pairs.data(), source.table_num_entries, lg_k, pairs.get_allocator());
}

// This is complicated because it effectively builds a Sparse version
// of a Pinned sketch before compressing it. Hence the name Hybrid.
template<typename A>
void cpc_compressor<A>::compress_hybrid_flavor(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
  if (source.sliding_window.size() == 0) throw std::logic_error("no sliding window");
  if (source.window_offset != 0) throw std::logic_error("window_offset != 0");
  const uint32_t k = 1 << source.get_lg_k();
  vector_u32<A> pairs_from_table = source.surprising_value_table.unwrapping_get_items();
  const uint32_t num_pairs_from_table = static_cast<uint32_t>(pairs_from_table.size());
  if (num_pairs_from_table > 0) u32_table<A>::introspective_insertion_sort(pairs_from_table.data(), 0, num_pairs_from_table);
  const uint32_t num_pairs_from_window = source.get_num_coupons() - num_pairs_from_table; // because the window offset is zero

  vector_u32<A> all_pairs = tricky_get_pairs_from_window(source.sliding_window.data(), k, num_pairs_from_window, num_pairs_from_table, source.get_allocator());

  u32_table<A>::merge(
      pairs_from_table.data(), 0, pairs_from_table.size(),
      all_pairs.data(), num_pairs_from_table, num_pairs_from_window,
      all_pairs.data(), 0
  );  // note the overlapping subarray trick

  compress_surprising_values(all_pairs, source.get_lg_k(), result);
}

template<typename A>
void cpc_compressor<A>::uncompress_hybrid_flavor(const compressed_state<A>& source, uncompressed_state<A>& target, uint8_t lg_k) const {
  if (source.window_data.size() > 0) throw std::logic_error("window is not expected");
  if (source.table_data.size() == 0) throw std::logic_error("table is expected");
  vector_u32<A> pairs = uncompress_surprising_values(source.table_data.data(), source.table_data_words, source.table_num_entries,
      lg_k, source.table_data.get_allocator());

  // In the hybrid flavor, some of these pairs actually
  // belong in the window, so we will separate them out,
  // moving the "true" pairs to the bottom of the array.
  const uint32_t k = 1 << lg_k;
  target.window.resize(k, 0); // important: zero the memory
  uint32_t next_true_pair = 0;
  for (uint32_t i = 0; i < source.table_num_entries; i++) {
    const uint32_t row_col = pairs[i];
    if (row_col == UINT32_MAX) throw std::logic_error("empty marker is not expected");
    const uint8_t col = row_col & 63;
    if (col < 8) {
      const uint32_t row = row_col >> 6;
      target.window[row] |= 1 << col; // set the window bit
    } else {
      pairs[next_true_pair++] = row_col; // move true pair down
    }
  }
  target.table = u32_table<A>::make_from_pairs(pairs.data(), next_true_pair, lg_k, pairs.get_allocator());
}

template<typename A>
void cpc_compressor<A>::compress_pinned_flavor(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
  compress_sliding_window(source.sliding_window.data(), source.get_lg_k(), source.get_num_coupons(), result);
  vector_u32<A> pairs = source.surprising_value_table.unwrapping_get_items();
  if (pairs.size() > 0) {
    // Here we subtract 8 from the column indices. Because they are stored in the low 6 bits
    // of each row_col pair, and because no column index is less than 8 for a "Pinned" sketch,
    // we can simply subtract 8 from the pairs themselves.

    // shift the columns over by 8 positions before compressing (because of the window)
    for (size_t i = 0; i < pairs.size(); i++) {
      if ((pairs[i] & 63) < 8) throw std::logic_error("(pairs[i] & 63) < 8");
      pairs[i] -= 8;
    }

    if (pairs.size() > 0) u32_table<A>::introspective_insertion_sort(pairs.data(), 0, pairs.size());
    compress_surprising_values(pairs, source.get_lg_k(), result);
  }
}

template<typename A>
void cpc_compressor<A>::uncompress_pinned_flavor(const compressed_state<A>& source, uncompressed_state<A>& target,
    uint8_t lg_k, uint32_t num_coupons) const {
  if (source.window_data.size() == 0) throw std::logic_error("window is expected");
  uncompress_sliding_window(source.window_data.data(), source.window_data_words, target.window, lg_k, num_coupons);
  const uint32_t num_pairs = source.table_num_entries;
  if (num_pairs == 0) {
    target.table = u32_table<A>(2, 6 + lg_k, source.table_data.get_allocator());
  } else {
    if (source.table_data.size() == 0) throw std::logic_error("table is expected");
    vector_u32<A> pairs = uncompress_surprising_values(source.table_data.data(), source.table_data_words, num_pairs,
        lg_k, source.table_data.get_allocator());
    // undo the compressor's 8-column shift
    for (uint32_t i = 0; i < num_pairs; i++) {
      if ((pairs[i] & 63) >= 56) throw std::logic_error("(pairs[i] & 63) >= 56");
      pairs[i] += 8;
    }
    target.table = u32_table<A>::make_from_pairs(pairs.data(), num_pairs, lg_k, pairs.get_allocator());
  }
}

template<typename A>
void cpc_compressor<A>::compress_sliding_flavor(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
  compress_sliding_window(source.sliding_window.data(), source.get_lg_k(), source.get_num_coupons(), result);
  vector_u32<A> pairs = source.surprising_value_table.unwrapping_get_items();
  if (pairs.size() > 0) {
    // Here we apply a complicated transformation to the column indices, which
    // changes the implied ordering of the pairs, so we must do it before sorting.

    const uint8_t pseudo_phase = determine_pseudo_phase(source.get_lg_k(), source.get_num_coupons());
    const uint8_t* permutation = column_permutations_for_encoding[pseudo_phase];

    const uint8_t offset = source.window_offset;
    if (offset > 56) throw std::out_of_range("offset out of range");

    for (size_t i = 0; i < pairs.size(); i++) {
      const uint32_t row_col = pairs[i];
      const uint32_t row = row_col >> 6;
      uint8_t col = row_col & 63;
      // first rotate the columns into a canonical configuration: new = ((old - (offset+8)) + 64) mod 64
      col = (col + 56 - offset) & 63;
      if (col >= 56) throw std::out_of_range("col out of range");
      // then apply the permutation
      col = permutation[col];
      pairs[i] = (row << 6) | col;
    }

    if (pairs.size() > 0) u32_table<A>::introspective_insertion_sort(pairs.data(), 0, pairs.size());
    compress_surprising_values(pairs, source.get_lg_k(), result);
  }
}

template<typename A>
void cpc_compressor<A>::uncompress_sliding_flavor(const compressed_state<A>& source, uncompressed_state<A>& target,
    uint8_t lg_k, uint32_t num_coupons) const {
  if (source.window_data.size() == 0) throw std::logic_error("window is expected");
  uncompress_sliding_window(source.window_data.data(), source.window_data_words, target.window, lg_k, num_coupons);
  const uint32_t num_pairs = source.table_num_entries;
  if (num_pairs == 0) {
    target.table = u32_table<A>(2, 6 + lg_k, source.table_data.get_allocator());
  } else {
    if (source.table_data.size() == 0) throw std::logic_error("table is expected");
    vector_u32<A> pairs = uncompress_surprising_values(source.table_data.data(), source.table_data_words, num_pairs,
        lg_k, source.table_data.get_allocator());

    const uint8_t pseudo_phase = determine_pseudo_phase(lg_k, num_coupons);
    if (pseudo_phase >= 16) throw std::logic_error("pseudo phase >= 16");
    const uint8_t* permutation = column_permutations_for_decoding[pseudo_phase];

    uint8_t offset = cpc_sketch_alloc<A>::determine_correct_offset(lg_k, num_coupons);
    if (offset > 56) throw std::out_of_range("offset out of range");

    for (uint32_t i = 0; i < num_pairs; i++) {
      const uint32_t row_col = pairs[i];
      const uint32_t row = row_col >> 6;
      uint8_t col = row_col & 63;
      // first undo the permutation
      col = permutation[col];
      // then undo the rotation: old = (new + (offset+8)) mod 64
      col = (col + (offset + 8)) & 63;
      pairs[i] = (row << 6) | col;
    }

    target.table = u32_table<A>::make_from_pairs(pairs.data(), num_pairs, lg_k, pairs.get_allocator());
  }
}

template<typename A>
void cpc_compressor<A>::compress_surprising_values(const vector_u32<A>& pairs, uint8_t lg_k, compressed_state<A>& result) const {
  const uint32_t k = 1 << lg_k;
  const uint32_t num_pairs = static_cast<uint32_t>(pairs.size());
  const uint8_t num_base_bits = golomb_choose_number_of_base_bits(k + num_pairs, num_pairs);
  const uint64_t table_len = safe_length_for_compressed_pair_buf(k, num_pairs, num_base_bits);
  result.table_data.resize(table_len);

  uint32_t csv_length = low_level_compress_pairs(pairs.data(), static_cast<uint32_t>(pairs.size()), num_base_bits, result.table_data.data());

  // At this point we could free the unused portion of the compression output buffer,
  // but it is not necessary if it is temporary
  // Note: realloc caused strange timing spikes for lgK = 11 and 12.

  result.table_data_words = csv_length;
  result.table_num_entries = num_pairs;
}

template<typename A>
vector_u32<A> cpc_compressor<A>::uncompress_surprising_values(const uint32_t* data, uint32_t data_words, uint32_t num_pairs,
    uint8_t lg_k, const A& allocator) const {
  const uint32_t k = 1 << lg_k;
  vector_u32<A> pairs(num_pairs, 0, allocator);
  const uint8_t num_base_bits = golomb_choose_number_of_base_bits(k + num_pairs, num_pairs);
  low_level_uncompress_pairs(pairs.data(), num_pairs, num_base_bits, data, data_words);
  return pairs;
}

template<typename A>
void cpc_compressor<A>::compress_sliding_window(const uint8_t* window, uint8_t lg_k, uint32_t num_coupons, compressed_state<A>& target) const {
  const uint32_t k = 1 << lg_k;
  const size_t window_buf_len = safe_length_for_compressed_window_buf(k);
  target.window_data.resize(window_buf_len);
  const uint8_t pseudo_phase = determine_pseudo_phase(lg_k, num_coupons);
  size_t data_words = low_level_compress_bytes(window, k, encoding_tables_for_high_entropy_byte[pseudo_phase], target.window_data.data());

  // At this point we could free the unused portion of the compression output buffer,
  // but it is not necessary if it is temporary
  // Note: realloc caused strange timing spikes for lgK = 11 and 12.

  target.window_data_words = static_cast<uint32_t>(data_words);
}

template<typename A>
void cpc_compressor<A>::uncompress_sliding_window(const uint32_t* data, uint32_t data_words, vector_u8<A>& window,
    uint8_t lg_k, uint32_t num_coupons) const {
  const uint32_t k = 1 << lg_k;
  window.resize(k); // zeroing not needed here (unlike the Hybrid Flavor)
  const uint8_t pseudo_phase = determine_pseudo_phase(lg_k, num_coupons);
  low_level_uncompress_bytes(window.data(), k, decoding_tables_for_high_entropy_byte[pseudo_phase], data, data_words);
}

template<typename A>
size_t cpc_compressor<A>::safe_length_for_compressed_pair_buf(uint32_t k, uint32_t num_pairs, uint8_t num_base_bits) {
  // Long ybits = k + numPairs; // simpler and safer UB
  // The following tighter UB on ybits is based on page 198
  // of the textbook "Managing Gigabytes" by Witten, Moffat, and Bell.
  // Notice that if numBaseBits == 0 it coincides with (k + numPairs).
  const size_t ybits = num_pairs * (1 + num_base_bits) + (k >> num_base_bits);
  const size_t xbits = 12 * num_pairs;
  const size_t padding = num_base_bits > 10 ? 0 : 10 - num_base_bits;
  return divide_longs_rounding_up(xbits + ybits + padding, 32);
}

// Explanation of padding: we write
// 1) xdelta (huffman, provides at least 1 bit, requires 12-bit lookahead)
// 2) ydeltaGolombHi (unary, provides at least 1 bit, requires 8-bit lookahead)
// 3) ydeltaGolombLo (straight B bits).
// So the 12-bit lookahead is the tight constraint, but there are at least (2 + B) bits emitted,
// so we would be safe with max (0, 10 - B) bits of padding at the end of the bitstream.
template<typename A>
size_t cpc_compressor<A>::safe_length_for_compressed_window_buf(uint32_t k) { // measured in 32-bit words
  const size_t bits = 12 * k + 11; // 11 bits of padding, due to 12-bit lookahead, with 1 bit certainly present.
  return divide_longs_rounding_up(bits, 32);
}

template<typename A>
uint8_t cpc_compressor<A>::determine_pseudo_phase(uint8_t lg_k, uint32_t c) {
  const uint32_t k = 1 << lg_k;
  // This mid-range logic produces pseudo-phases. They are used to select encoding tables.
  // The thresholds were chosen by hand after looking at plots of measured compression.
  if (1000 * c < 2375 * k) {
    if      (   4 * c <    3 * k) return 16 + 0; // mid-range table
    else if (  10 * c <   11 * k) return 16 + 1; // mid-range table
    else if ( 100 * c <  132 * k) return 16 + 2; // mid-range table
    else if (   3 * c <    5 * k) return 16 + 3; // mid-range table
    else if (1000 * c < 1965 * k) return 16 + 4; // mid-range table
    else if (1000 * c < 2275 * k) return 16 + 5; // mid-range table
    else return 6;  // steady-state table employed before its actual phase
  } else { // This steady-state logic produces true phases. They are used to select
         // encoding tables, and also column permutations for the "Sliding" flavor.
    if (lg_k < 4) throw std::logic_error("lgK < 4");
    const size_t tmp = c >> (lg_k - 4);
    const uint8_t phase = tmp & 15;
    if (phase < 0 || phase >= 16) throw std::out_of_range("wrong phase");
    return phase;
  }
}

static inline void maybe_flush_bitbuf(uint64_t& bitbuf, uint8_t& bufbits, uint32_t* wordarr, uint32_t& wordindex) {
  if (bufbits >= 32) {
    wordarr[wordindex++] = bitbuf & 0xffffffff;
    bitbuf = bitbuf >> 32;
    bufbits -= 32;
  }
}

static inline void maybe_fill_bitbuf(uint64_t& bitbuf, uint8_t& bufbits, const uint32_t* wordarr, uint32_t& wordindex, uint8_t minbits) {
  if (bufbits < minbits) {
    bitbuf |= static_cast<uint64_t>(wordarr[wordindex++]) << bufbits;
    bufbits += 32;
  }
}

// This returns the number of compressed words that were actually used.
// It is the caller's responsibility to ensure that the compressed_words array is long enough.
template<typename A>
uint32_t cpc_compressor<A>::low_level_compress_bytes(
    const uint8_t* byte_array, // input
    uint32_t num_bytes_to_encode,
    const uint16_t* encoding_table,
    uint32_t* compressed_words // output
) const {
  uint64_t bitbuf = 0; // bits are packed into this first, then are flushed to compressed_words
  uint8_t bufbits = 0; // number of bits currently in bitbuf; must be between 0 and 31
  uint32_t next_word_index = 0;

  for (uint32_t byte_index = 0; byte_index < num_bytes_to_encode; byte_index++) {
    const uint16_t code_info = encoding_table[byte_array[byte_index]];
    const uint64_t code_val = code_info & 0xfff;
    const uint8_t code_len = code_info >> 12;
    bitbuf |= (code_val << bufbits);
    bufbits += code_len;
    maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
  }

  // Pad the bitstream with 11 zero-bits so that the decompressor's 12-bit peek can't overrun its input.
  bufbits += 11;
  maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);

  if (bufbits > 0) { // We are done encoding now, so we flush the bit buffer.
    if (bufbits >= 32) throw std::logic_error("bufbits >= 32");
    compressed_words[next_word_index++] = bitbuf & 0xffffffff;
    bitbuf = 0; bufbits = 0; // not really necessary
  }
  return next_word_index;
}

template<typename A>
void cpc_compressor<A>::low_level_uncompress_bytes(
    uint8_t* byte_array, // output
    uint32_t num_bytes_to_decode,
    const uint16_t* decoding_table,
    const uint32_t* compressed_words, // input
    uint32_t num_compressed_words
) const {
  uint32_t word_index = 0;
  uint64_t bitbuf = 0;
  uint8_t bufbits = 0;

  if (byte_array == nullptr) throw std::logic_error("byte_array == NULL");
  if (decoding_table == nullptr) throw std::logic_error("decoding_table == NULL");
  if (compressed_words == nullptr) throw std::logic_error("compressed_words == NULL");

  for (uint32_t byte_index = 0; byte_index < num_bytes_to_decode; byte_index++) {
    maybe_fill_bitbuf(bitbuf, bufbits, compressed_words, word_index, 12); // ensure 12 bits in bit buffer

    const size_t peek12 = bitbuf & 0xfff; // These 12 bits will include an entire Huffman codeword.
    const uint16_t lookup = decoding_table[peek12];
    const uint8_t code_word_length = lookup >> 8;
    const uint8_t decoded_byte = lookup & 0xff;
    byte_array[byte_index] = decoded_byte;
    bitbuf >>= code_word_length;
    bufbits -= code_word_length;
  }
  // Buffer over-run should be impossible unless there is a bug.
  // However, we might as well check here.
  if (word_index > num_compressed_words) throw std::logic_error("word_index > num_compressed_words");
}

static inline uint64_t read_unary(
    const uint32_t* compressed_words,
    uint32_t& next_word_index,
    uint64_t& bitbuf,
    uint8_t& bufbits
);

static inline void write_unary(
    uint32_t* compressed_words,
    uint32_t& next_word_index_ptr,
    uint64_t& bit_buf_ptr,
    uint8_t& buf_bits_ptr,
    uint64_t value
);

// Here "pairs" refers to row/column pairs that specify
// the positions of surprising values in the bit matrix.

// returns the number of compressed_words actually used
template<typename A>
uint32_t cpc_compressor<A>::low_level_compress_pairs(
    const uint32_t* pair_array,  // input
    uint32_t num_pairs_to_encode,
    uint8_t num_base_bits,
    uint32_t* compressed_words // output
) const {
  uint64_t bitbuf = 0;
  uint8_t bufbits = 0;
  uint32_t next_word_index = 0;
  const uint64_t golomb_lo_mask = (1 << num_base_bits) - 1;
  uint32_t predicted_row_index = 0;
  uint8_t predicted_col_index = 0;

  for (uint32_t pair_index = 0; pair_index < num_pairs_to_encode; pair_index++) {
    const uint32_t row_col = pair_array[pair_index];
    const uint32_t row_index = row_col >> 6;
    const uint8_t col_index = row_col & 63;

    if (row_index != predicted_row_index) predicted_col_index = 0;

    if (row_index < predicted_row_index) throw std::logic_error("row_index < predicted_row_index");
    if (col_index < predicted_col_index) throw std::logic_error("col_index < predicted_col_index");

    const uint32_t y_delta = row_index - predicted_row_index;
    const uint8_t x_delta = col_index - predicted_col_index;

    predicted_row_index = row_index;
    predicted_col_index = col_index + 1;

    const uint16_t code_info = length_limited_unary_encoding_table65[x_delta];
    const uint64_t code_val = code_info & 0xfff;
    const uint8_t code_len = static_cast<uint8_t>(code_info >> 12);
    bitbuf |= code_val << bufbits;
    bufbits += code_len;
    maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);

    const uint64_t golomb_lo = y_delta & golomb_lo_mask;
    const uint64_t golomb_hi = y_delta >> num_base_bits;

    write_unary(compressed_words, next_word_index, bitbuf, bufbits, golomb_hi);

    bitbuf |= golomb_lo << bufbits;
    bufbits += num_base_bits;
    maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
  }

  // Pad the bitstream so that the decompressor's 12-bit peek can't overrun its input.
  const uint8_t padding = (num_base_bits > 10) ? 0 : 10 - num_base_bits;
  bufbits += padding;
  maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);

  if (bufbits > 0) { // We are done encoding now, so we flush the bit buffer
    if (bufbits >= 32) throw std::logic_error("bufbits >= 32");
    compressed_words[next_word_index++] = bitbuf & 0xffffffff;
    bitbuf = 0; bufbits = 0; // not really necessary
  }

  return next_word_index;
}

template<typename A>
void cpc_compressor<A>::low_level_uncompress_pairs(
    uint32_t* pair_array, // output
    uint32_t num_pairs_to_decode,
    uint8_t num_base_bits,
    const uint32_t* compressed_words, // input
    uint32_t num_compressed_words
) const {
  uint32_t word_index = 0;
  uint64_t bitbuf = 0;
  uint8_t bufbits = 0;
  const uint64_t golomb_lo_mask = (1 << num_base_bits) - 1;
  uint32_t predicted_row_index = 0;
  uint8_t predicted_col_index = 0;

  // for each pair we need to read:
  // x_delta (12-bit length-limited unary)
  // y_delta_hi (unary)
  // y_delta_lo (basebits)

  for (uint32_t pair_index = 0; pair_index < num_pairs_to_decode; pair_index++) {
    maybe_fill_bitbuf(bitbuf, bufbits, compressed_words, word_index, 12); // ensure 12 bits in bit buffer
    const size_t peek12 = bitbuf & 0xfff;
    const uint16_t lookup = length_limited_unary_decoding_table65[peek12];
    const uint8_t code_word_length = lookup >> 8;
    const int8_t x_delta = lookup & 0xff;
    bitbuf >>= code_word_length;
    bufbits -= code_word_length;

    const uint64_t golomb_hi = read_unary(compressed_words, word_index, bitbuf, bufbits);

    maybe_fill_bitbuf(bitbuf, bufbits, compressed_words, word_index, num_base_bits); // ensure num_base_bits in bit buffer
    const uint64_t golomb_lo = bitbuf & golomb_lo_mask;
    bitbuf >>= num_base_bits;
    bufbits -= num_base_bits;
    const int64_t y_delta = (golomb_hi << num_base_bits) | golomb_lo;

    // Now that we have x_delta and y_delta, we can compute the pair's row and column
    if (y_delta > 0) predicted_col_index = 0;
    const uint32_t row_index = static_cast<uint32_t>(predicted_row_index + y_delta);
    const uint8_t col_index = predicted_col_index + x_delta;
    const uint32_t row_col = (row_index << 6) | col_index;
    pair_array[pair_index] = row_col;
    predicted_row_index = row_index;
    predicted_col_index = col_index + 1;
  }
  if (word_index > num_compressed_words) throw std::logic_error("word_index > num_compressed_words"); // check for buffer over-run
}

uint64_t read_unary(
    const uint32_t* compressed_words,
    uint32_t& next_word_index,
    uint64_t& bitbuf,
    uint8_t& bufbits
) {
  if (compressed_words == nullptr) throw std::logic_error("compressed_words == NULL");
  size_t subtotal = 0;
  while (true) {
    maybe_fill_bitbuf(bitbuf, bufbits, compressed_words, next_word_index, 8); // ensure 8 bits in bit buffer

    const uint8_t peek8 = bitbuf & 0xff; // These 8 bits include either all or part of the Unary codeword
    const uint8_t trailing_zeros = byte_trailing_zeros_table[peek8];

    if (trailing_zeros > 8) throw std::out_of_range("trailing_zeros out of range");
    if (trailing_zeros < 8) {
      bufbits -= 1 + trailing_zeros;
      bitbuf >>= 1 + trailing_zeros;
      return subtotal + trailing_zeros;
    }
    // The codeword was partial, so read some more
    subtotal += 8;
    bufbits -= 8;
    bitbuf >>= 8;
  }
}

void write_unary(
    uint32_t* compressed_words,
    uint32_t& next_word_index,
    uint64_t& bitbuf,
    uint8_t& bufbits,
    uint64_t value
) {
  if (compressed_words == nullptr) throw std::logic_error("compressed_words == NULL");
  if (bufbits > 31) throw std::out_of_range("bufbits out of range");

  uint64_t remaining = value;

  while (remaining >= 16) {
    remaining -= 16;
    // Here we output 16 zeros, but we don't need to physically write them into bitbuf
    // because it already contains zeros in that region.
    bufbits += 16; // Record the fact that 16 bits of output have occurred.
    maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
  }

  if (remaining > 15) throw std::out_of_range("remaining out of range");

  const uint64_t the_unary_code = 1ULL << remaining;
  bitbuf |= the_unary_code << bufbits;
  bufbits += static_cast<uint8_t>(remaining + 1);
  maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
}

// The empty space that this leaves at the beginning of the output array
// will be filled in later by the caller.
template<typename A>
vector_u32<A> cpc_compressor<A>::tricky_get_pairs_from_window(const uint8_t* window, uint32_t k, uint32_t num_pairs_to_get,
    uint32_t empty_space, const A& allocator) {
  const size_t output_length = empty_space + num_pairs_to_get;
  vector_u32<A> pairs(output_length, 0, allocator);
  size_t pair_index = empty_space;
  for (unsigned row_index = 0; row_index < k; row_index++) {
    uint8_t byte = window[row_index];
    while (byte != 0) {
      const uint8_t col_index = byte_trailing_zeros_table[byte];
      byte = byte ^ (1 << col_index); // erase the 1
      pairs[pair_index++] = (row_index << 6) | col_index;
    }
  }
  if (pair_index != output_length) throw std::logic_error("pair_index != output_length");
  return pairs;
}

// returns an integer that is between
// zero and ceiling(log_2(k)) - 1, inclusive
template<typename A>
uint8_t cpc_compressor<A>::golomb_choose_number_of_base_bits(uint32_t k, uint64_t count) {
  if (k < 1) throw std::invalid_argument("golomb_choose_number_of_base_bits: k < 1");
  if (count < 1) throw std::invalid_argument("golomb_choose_number_of_base_bits: count < 1");
  const uint64_t quotient = (k - count) / count; // integer division
  if (quotient == 0) return 0;
  else return floor_log2_of_long(quotient);
}

} /* namespace datasketches */

#endif