dsi_bitstream/codes/
omega.rs

1/*
2 * SPDX-FileCopyrightText: 2024 Tommaso Fontana
3 * SPDX-FileCopyrightText: 2025 Sebastiano Vigna
4 *
5 * SPDX-License-Identifier: Apache-2.0 OR LGPL-2.1-or-later
6 */
7
8//! Elias ω code.
9//!
10//! Elias [γ](super::gamma) and [δ](super::delta) codes encode a number *n* by
11//! storing the binary representation of *n* + 1, with the most significant bit
12//! removed, prefixed by its length in unary or [γ](super::gamma) code,
13//! respectively. Thus, [δ](super::delta) can be seen as adding one level of
14//! recursion in the length representation with respect to [γ](super::gamma).
15//! The ω code encodes the length of the binary representation of *n* + 1
16//! recursively.
17//!
18//! The implied distribution for the ω code is difficult to write analytically,
19//! but essentially it is as close as possible to ≈ 1/*x* (as there is no code
20//! for that distribution).
21//!
22//! The supported range is [0 . . 2⁶⁴ – 1).
23//!
24//! The ω code is easier to describe the format of a code, rather than the
25//! encoding algorithm.
26//!
27//! A codeword is given by the concatenation of blocks *b*₀ *b*₁ …  *b*ₙ `0`,
28//! where each block *b*ᵢ is a binary string starting with `1` and *b*₀ = `10`
29//! or `11`. One can interpret the highest bit of each block as a continuation
30//! bit, and the last `0` as a terminator of the code.
31//!
32//! The condition for a valid codeword is that the value represented by each
33//! block, incremented by one, is the length of the following block, except for
34//! the last block.
35//!
36//! The value associated with a codeword is 0 if the code is `0`, and otherwise
37//! the value of the last block, decremented by one.
38//!
39//! For example, `1110110`, which is formed by the blocks `11`, `1011`, and `0`,
40//! represents the number 10.
41//!
42//! As discussed in the [codes module documentation](crate::codes), to make the
43//! code readable in the little-endian case, rather than reversing the bits of
44//! the blocks, which would be expensive, we simply rotate by one on the left
45//! each block, with the result that the most significant bit of the block is
46//! now the first bit in the stream, making it possible to check for the
47//! presence of a continuation bit. For example, in the little-endian case, the
48//! code for 10 is `0011111`, which is formed by the blocks `11`, `0111`, and
49//! `0`.
50//!
51//! # Table-Based Optimization
52//!
53//! Unlike [γ](super::gamma), [δ](super::delta), and [ζ](super::zeta) codes, ω
54//! codes use a special optimization for partial decoding. Due to the recursive
55//! nature of ω codes, when a complete codeword cannot be read from the table
56//! the table still provides partial information about the blocks that were
57//! successfully decoded. This partial state is used to continue decoding
58//! efficiently, avoiding re-reading the initial blocks.
59//!
60//! # References
61//!
62//! Peter Elias. “[Universal codeword sets and representations of the
63//! integers](https://doi.org/10.1109/TIT.1975.1055349)”. IEEE Transactions on
64//! Information Theory, 21(2):194−203, March 1975.
65
66use crate::{codes::omega_tables, prelude::*};
67use common_traits::CastableInto;
68
69/// Returns the length of the ω code for `n`.
70#[inline(always)]
71pub fn len_omega_param<const USE_TABLE: bool>(n: u64) -> usize {
72    debug_assert!(n < u64::MAX);
73    if USE_TABLE {
74        if let Some(len) = omega_tables::LEN.get(n as usize) {
75            return *len as usize;
76        }
77    }
78    recursive_len(n + 1)
79}
80
81/// Returns the length of the ω code for `n`.
82#[inline(always)]
83pub fn len_omega(n: u64) -> usize {
84    debug_assert!(n < u64::MAX);
85    len_omega_param::<true>(n)
86}
87
88fn recursive_len(n: u64) -> usize {
89    if n <= 1 {
90        return 1;
91    }
92    let λ = n.ilog2() as u64;
93    recursive_len(λ) + λ as usize + 1
94}
95
96/// Trait for reading ω codes.
97///
98/// This is the trait you should usually pull in scope to read ω codes.
99pub trait OmegaRead<E: Endianness>: BitRead<E> {
100    fn read_omega(&mut self) -> Result<u64, Self::Error>;
101}
102
103/// Parametric trait for reading ω codes.
104///
105/// This trait is is more general than [`OmegaRead`], as it makes it possible
106/// to specify how to use tables using const parameters.
107///
108/// We provide an implementation of this trait for [`BitRead`]. An implementation
109/// of [`OmegaRead`] using default values is usually provided exploiting the
110/// [`crate::codes::params::ReadParams`] mechanism.
111pub trait OmegaReadParam<E: Endianness>: BitRead<E> {
112    fn read_omega_param<const USE_TABLES: bool>(&mut self) -> Result<u64, Self::Error>;
113}
114
115/// Default, internal non-table based implementation that works
116/// for any endianness.
117#[inline(always)]
118fn default_read_omega<E: Endianness, B: BitRead<E>>(backend: &mut B) -> Result<u64, B::Error> {
119    read_omega_from_state::<E, B>(backend, 1)
120}
121
122/// Internal implementation that continues reading from a given state.
123///
124/// This is used both by the default implementation (starting from state n=1)
125/// and by the table-accelerated version (continuing from partial state).
126/// The bits have already been skipped by the caller.
127#[inline(always)]
128fn read_omega_from_state<E: Endianness, B: BitRead<E>>(
129    backend: &mut B,
130    mut n: u64,
131) -> Result<u64, B::Error> {
132    loop {
133        let bit = backend.peek_bits(1)?.cast();
134        if bit == 0 {
135            backend.skip_bits_after_peek(1);
136            return Ok(n - 1);
137        }
138
139        let λ = n;
140        n = backend.read_bits(λ as usize + 1)?;
141
142        if E::IS_LITTLE {
143            // Little-endian case: rotate right the lower λ + 1 bits (the lowest
144            // bit is a one) to reverse the rotation performed when writing
145            n = (n >> 1) | (1 << λ);
146        }
147    }
148}
149
150impl<B: BitRead<BE>> OmegaReadParam<BE> for B {
151    #[inline(always)]
152    fn read_omega_param<const USE_TABLES: bool>(&mut self) -> Result<u64, Self::Error> {
153        if USE_TABLES {
154            let (len_with_flag, value) = omega_tables::read_table_be(self);
155            if (len_with_flag & 0x80) == 0 {
156                // Complete code - bits already skipped in read_table
157                return Ok(value);
158            } else {
159                // Partial code - bits already skipped in read_table, continue from partial_n
160                return read_omega_from_state::<BE, _>(self, value);
161            }
162        }
163        default_read_omega(self)
164    }
165}
166
167impl<B: BitRead<LE>> OmegaReadParam<LE> for B {
168    #[inline(always)]
169    fn read_omega_param<const USE_TABLES: bool>(&mut self) -> Result<u64, Self::Error> {
170        if USE_TABLES {
171            let (len_with_flag, value) = omega_tables::read_table_le(self);
172            if (len_with_flag & 0x80) == 0 {
173                // Complete code - bits already skipped in read_table
174                return Ok(value);
175            } else {
176                // Partial code - bits already skipped in read_table, continue from partial_n
177                return read_omega_from_state::<LE, _>(self, value);
178            }
179        }
180        default_read_omega(self)
181    }
182}
183
184/// Trait for writing ω codes.
185///
186/// This is the trait you should usually pull in scope to write ω codes.
187pub trait OmegaWrite<E: Endianness>: BitWrite<E> {
188    fn write_omega(&mut self, value: u64) -> Result<usize, Self::Error>;
189}
190
191/// Parametric trait for writing ω codes.
192///
193/// This trait is is more general than [`OmegaWrite`], as it makes it possible
194/// to specify how to use tables using const parameters.
195///
196/// We provide an implementation of this trait for [`BitWrite`]. An implementation
197/// of [`OmegaWrite`] using default values is usually provided exploiting the
198/// [`crate::codes::params::WriteParams`] mechanism.
199pub trait OmegaWriteParam<E: Endianness>: BitWrite<E> {
200    fn write_omega_param<const USE_TABLES: bool>(&mut self, n: u64) -> Result<usize, Self::Error>;
201}
202
203impl<B: BitWrite<BE>> OmegaWriteParam<BE> for B {
204    #[inline(always)]
205    fn write_omega_param<const USE_TABLES: bool>(&mut self, n: u64) -> Result<usize, Self::Error> {
206        debug_assert!(n < u64::MAX);
207        if USE_TABLES {
208            if let Ok(Some(len)) = omega_tables::write_table_be(self, n) {
209                return Ok(len);
210            }
211        }
212        Ok(recursive_omega_write::<BE, _>(n + 1, self)? + self.write_bits(0, 1)?)
213    }
214}
215
216impl<B: BitWrite<LE>> OmegaWriteParam<LE> for B {
217    #[inline(always)]
218    fn write_omega_param<const USE_TABLES: bool>(&mut self, n: u64) -> Result<usize, Self::Error> {
219        debug_assert!(n < u64::MAX);
220        if USE_TABLES {
221            if let Ok(Some(len)) = omega_tables::write_table_le(self, n) {
222                return Ok(len);
223            }
224        }
225        Ok(recursive_omega_write::<LE, _>(n + 1, self)? + self.write_bits(0, 1)?)
226    }
227}
228
229#[inline(always)]
230fn recursive_omega_write<E: Endianness, B: BitWrite<E>>(
231    mut n: u64,
232    writer: &mut B,
233) -> Result<usize, B::Error> {
234    if n <= 1 {
235        return Ok(0);
236    }
237    let λ = n.ilog2();
238    if E::IS_LITTLE {
239        #[cfg(feature = "checks")]
240        {
241            // Clean up after the lowest λ bits in case checks are enabled
242            n &= u64::MAX >> (u64::BITS - λ);
243        }
244        // Little-endian case: rotate left the lower λ + 1 bits (the bit in
245        // position λ is a one) so that the lowest bit can be peeked to find the
246        // block.
247        n = (n << 1) | 1;
248    }
249    Ok(recursive_omega_write::<E, _>(λ as u64, writer)? + writer.write_bits(n, λ as usize + 1)?)
250}
251
252#[cfg(test)]
253mod test {
254    use crate::prelude::*;
255
256    #[test]
257    #[allow(clippy::unusual_byte_groupings)]
258    fn test_omega() {
259        for (value, expected_be, expected_le) in [
260            (0, 0, 0),
261            (1, 0b10_0 << (64 - 3), 0b0_01),
262            (2, 0b11_0 << (64 - 3), 0b0_11),
263            (3, 0b10_100_0 << (64 - 6), 0b0_001_01),
264            (4, 0b10_101_0 << (64 - 6), 0b0_011_01),
265            (5, 0b10_110_0 << (64 - 6), 0b0_101_01),
266            (6, 0b10_111_0 << (64 - 6), 0b0_111_01),
267            (7, 0b11_1000_0 << (64 - 7), 0b0_0001_11),
268            (15, 0b10_100_10000_0 << (64 - 11), 0b0_00001_001_01),
269            (99, 0b10_110_1100100_0 << (64 - 13), 0b0_1001001_101_01),
270            (
271                999,
272                0b11_1001_1111101000_0 << (64 - 17),
273                0b0_1111010001_0011_11,
274            ),
275            (
276                999_999,
277                0b10_100_10011_11110100001001000000_0 << (64 - 31),
278                0b0_11101000010010000001_00111_001_01,
279            ),
280        ] {
281            let mut data = [0_u64];
282            let mut writer = <BufBitWriter<BE, _>>::new(MemWordWriterSlice::new(&mut data));
283            writer.write_omega(value).unwrap();
284            drop(writer);
285            assert_eq!(
286                data[0].to_be(),
287                expected_be,
288                "\nfor value: {}\ngot: {:064b}\nexp: {:064b}\n",
289                value,
290                data[0].to_be(),
291                expected_be,
292            );
293
294            let mut data = [0_u64];
295            let mut writer = <BufBitWriter<LE, _>>::new(MemWordWriterSlice::new(&mut data));
296            writer.write_omega(value).unwrap();
297            drop(writer);
298            assert_eq!(
299                data[0].to_le(),
300                expected_le,
301                "\nfor value: {}\ngot: {:064b}\nexp: {:064b}\n",
302                value,
303                data[0].to_le(),
304                expected_le,
305            );
306        }
307    }
308}